ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 Unicode version

Theorem fin0 6982
Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
Distinct variable group:    x, A

Proof of Theorem fin0
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6852 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 simplrr 536 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n )
4 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  =  (/) )
53, 4breqtrd 4070 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
6 en0 6887 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
75, 6sylib 122 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
8 nner 2380 . . . . 5  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
97, 8syl 14 . . . 4  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  A  =/=  (/) )
10 n0r 3474 . . . . . 6  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
1110necon2bi 2431 . . . . 5  |-  ( A  =  (/)  ->  -.  E. x  x  e.  A
)
127, 11syl 14 . . . 4  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  E. x  x  e.  A
)
139, 122falsed 704 . . 3  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
14 simplrr 536 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  A  ~~  n )
1514adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  A  ~~  n )
1615ensymd 6875 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  n  ~~  A )
17 bren 6835 . . . . . . . 8  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
1816, 17sylib 122 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. f 
f : n -1-1-onto-> A )
19 f1of 5522 . . . . . . . . . . . 12  |-  ( f : n -1-1-onto-> A  ->  f :
n --> A )
2019adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  f : n --> A )
21 sucidg 4463 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  m  e.  suc  m )
2221ad3antlr 493 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  suc  m )
23 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  n  =  suc  m )
2422, 23eleqtrrd 2285 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  n )
2520, 24ffvelcdmd 5716 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  (
f `  m )  e.  A )
26 elex2 2788 . . . . . . . . . 10  |-  ( ( f `  m )  e.  A  ->  E. x  x  e.  A )
2725, 26syl 14 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  E. x  x  e.  A )
2827, 10syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  A  =/=  (/) )
2928, 272thd 175 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
3018, 29exlimddv 1922 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
3130ex 115 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  (
n  =  suc  m  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
) )
3231rexlimdva 2623 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( E. m  e.  om  n  =  suc  m  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) ) )
3332imp 124 . . 3  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  E. m  e.  om  n  =  suc  m )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
34 nn0suc 4652 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
3534ad2antrl 490 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
3613, 33, 35mpjaodan 800 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
372, 36rexlimddv 2628 1  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176    =/= wne 2376   E.wrex 2485   (/)c0 3460   class class class wbr 4044   suc csuc 4412   omcom 4638   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271    ~~ cen 6825   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  findcard2  6986  findcard2s  6987  diffisn  6990  fimax2gtri  6998  elfi2  7074  elfir  7075  fiuni  7080  fifo  7082  4sqlem12  12725
  Copyright terms: Public domain W3C validator