ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 Unicode version

Theorem fin0 7047
Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
Distinct variable group:    x, A

Proof of Theorem fin0
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6912 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 simplrr 536 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n )
4 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  =  (/) )
53, 4breqtrd 4109 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
6 en0 6947 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
75, 6sylib 122 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
8 nner 2404 . . . . 5  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
97, 8syl 14 . . . 4  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  A  =/=  (/) )
10 n0r 3505 . . . . . 6  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
1110necon2bi 2455 . . . . 5  |-  ( A  =  (/)  ->  -.  E. x  x  e.  A
)
127, 11syl 14 . . . 4  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  E. x  x  e.  A
)
139, 122falsed 707 . . 3  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
14 simplrr 536 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  A  ~~  n )
1514adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  A  ~~  n )
1615ensymd 6935 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  n  ~~  A )
17 bren 6895 . . . . . . . 8  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
1816, 17sylib 122 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. f 
f : n -1-1-onto-> A )
19 f1of 5572 . . . . . . . . . . . 12  |-  ( f : n -1-1-onto-> A  ->  f :
n --> A )
2019adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  f : n --> A )
21 sucidg 4507 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  m  e.  suc  m )
2221ad3antlr 493 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  suc  m )
23 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  n  =  suc  m )
2422, 23eleqtrrd 2309 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  n )
2520, 24ffvelcdmd 5771 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  (
f `  m )  e.  A )
26 elex2 2816 . . . . . . . . . 10  |-  ( ( f `  m )  e.  A  ->  E. x  x  e.  A )
2725, 26syl 14 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  E. x  x  e.  A )
2827, 10syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  A  =/=  (/) )
2928, 272thd 175 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
3018, 29exlimddv 1945 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
3130ex 115 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  (
n  =  suc  m  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
) )
3231rexlimdva 2648 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( E. m  e.  om  n  =  suc  m  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) ) )
3332imp 124 . . 3  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  E. m  e.  om  n  =  suc  m )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
34 nn0suc 4696 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
3534ad2antrl 490 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
3613, 33, 35mpjaodan 803 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
372, 36rexlimddv 2653 1  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   E.wrex 2509   (/)c0 3491   class class class wbr 4083   suc csuc 4456   omcom 4682   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318    ~~ cen 6885   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by:  findcard2  7051  findcard2s  7052  diffisn  7055  fimax2gtri  7063  elfi2  7139  elfir  7140  fiuni  7145  fifo  7147  4sqlem12  12925
  Copyright terms: Public domain W3C validator