| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fin0 | Unicode version | ||
| Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.) |
| Ref | Expression |
|---|---|
| fin0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6852 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | simplrr 536 |
. . . . . . 7
| |
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 3, 4 | breqtrd 4070 |
. . . . . 6
|
| 6 | en0 6887 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 122 |
. . . . 5
|
| 8 | nner 2380 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | n0r 3474 |
. . . . . 6
| |
| 11 | 10 | necon2bi 2431 |
. . . . 5
|
| 12 | 7, 11 | syl 14 |
. . . 4
|
| 13 | 9, 12 | 2falsed 704 |
. . 3
|
| 14 | simplrr 536 |
. . . . . . . . . 10
| |
| 15 | 14 | adantr 276 |
. . . . . . . . 9
|
| 16 | 15 | ensymd 6875 |
. . . . . . . 8
|
| 17 | bren 6835 |
. . . . . . . 8
| |
| 18 | 16, 17 | sylib 122 |
. . . . . . 7
|
| 19 | f1of 5522 |
. . . . . . . . . . . 12
| |
| 20 | 19 | adantl 277 |
. . . . . . . . . . 11
|
| 21 | sucidg 4463 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | ad3antlr 493 |
. . . . . . . . . . . 12
|
| 23 | simplr 528 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | eleqtrrd 2285 |
. . . . . . . . . . 11
|
| 25 | 20, 24 | ffvelcdmd 5716 |
. . . . . . . . . 10
|
| 26 | elex2 2788 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | 27, 10 | syl 14 |
. . . . . . . 8
|
| 29 | 28, 27 | 2thd 175 |
. . . . . . 7
|
| 30 | 18, 29 | exlimddv 1922 |
. . . . . 6
|
| 31 | 30 | ex 115 |
. . . . 5
|
| 32 | 31 | rexlimdva 2623 |
. . . 4
|
| 33 | 32 | imp 124 |
. . 3
|
| 34 | nn0suc 4652 |
. . . 4
| |
| 35 | 34 | ad2antrl 490 |
. . 3
|
| 36 | 13, 33, 35 | mpjaodan 800 |
. 2
|
| 37 | 2, 36 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-fin 6830 |
| This theorem is referenced by: findcard2 6986 findcard2s 6987 diffisn 6990 fimax2gtri 6998 elfi2 7074 elfir 7075 fiuni 7080 fifo 7082 4sqlem12 12725 |
| Copyright terms: Public domain | W3C validator |