| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fin0 | Unicode version | ||
| Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.) |
| Ref | Expression |
|---|---|
| fin0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6875 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | simplrr 536 |
. . . . . . 7
| |
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 3, 4 | breqtrd 4085 |
. . . . . 6
|
| 6 | en0 6910 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 122 |
. . . . 5
|
| 8 | nner 2382 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | n0r 3482 |
. . . . . 6
| |
| 11 | 10 | necon2bi 2433 |
. . . . 5
|
| 12 | 7, 11 | syl 14 |
. . . 4
|
| 13 | 9, 12 | 2falsed 704 |
. . 3
|
| 14 | simplrr 536 |
. . . . . . . . . 10
| |
| 15 | 14 | adantr 276 |
. . . . . . . . 9
|
| 16 | 15 | ensymd 6898 |
. . . . . . . 8
|
| 17 | bren 6858 |
. . . . . . . 8
| |
| 18 | 16, 17 | sylib 122 |
. . . . . . 7
|
| 19 | f1of 5544 |
. . . . . . . . . . . 12
| |
| 20 | 19 | adantl 277 |
. . . . . . . . . . 11
|
| 21 | sucidg 4481 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | ad3antlr 493 |
. . . . . . . . . . . 12
|
| 23 | simplr 528 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | eleqtrrd 2287 |
. . . . . . . . . . 11
|
| 25 | 20, 24 | ffvelcdmd 5739 |
. . . . . . . . . 10
|
| 26 | elex2 2793 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | 27, 10 | syl 14 |
. . . . . . . 8
|
| 29 | 28, 27 | 2thd 175 |
. . . . . . 7
|
| 30 | 18, 29 | exlimddv 1923 |
. . . . . 6
|
| 31 | 30 | ex 115 |
. . . . 5
|
| 32 | 31 | rexlimdva 2625 |
. . . 4
|
| 33 | 32 | imp 124 |
. . 3
|
| 34 | nn0suc 4670 |
. . . 4
| |
| 35 | 34 | ad2antrl 490 |
. . 3
|
| 36 | 13, 33, 35 | mpjaodan 800 |
. 2
|
| 37 | 2, 36 | rexlimddv 2630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: findcard2 7012 findcard2s 7013 diffisn 7016 fimax2gtri 7024 elfi2 7100 elfir 7101 fiuni 7106 fifo 7108 4sqlem12 12840 |
| Copyright terms: Public domain | W3C validator |