| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fin0 | Unicode version | ||
| Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.) |
| Ref | Expression |
|---|---|
| fin0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6912 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | simplrr 536 |
. . . . . . 7
| |
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 3, 4 | breqtrd 4109 |
. . . . . 6
|
| 6 | en0 6947 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 122 |
. . . . 5
|
| 8 | nner 2404 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | n0r 3505 |
. . . . . 6
| |
| 11 | 10 | necon2bi 2455 |
. . . . 5
|
| 12 | 7, 11 | syl 14 |
. . . 4
|
| 13 | 9, 12 | 2falsed 707 |
. . 3
|
| 14 | simplrr 536 |
. . . . . . . . . 10
| |
| 15 | 14 | adantr 276 |
. . . . . . . . 9
|
| 16 | 15 | ensymd 6935 |
. . . . . . . 8
|
| 17 | bren 6895 |
. . . . . . . 8
| |
| 18 | 16, 17 | sylib 122 |
. . . . . . 7
|
| 19 | f1of 5572 |
. . . . . . . . . . . 12
| |
| 20 | 19 | adantl 277 |
. . . . . . . . . . 11
|
| 21 | sucidg 4507 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | ad3antlr 493 |
. . . . . . . . . . . 12
|
| 23 | simplr 528 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | eleqtrrd 2309 |
. . . . . . . . . . 11
|
| 25 | 20, 24 | ffvelcdmd 5771 |
. . . . . . . . . 10
|
| 26 | elex2 2816 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | 27, 10 | syl 14 |
. . . . . . . 8
|
| 29 | 28, 27 | 2thd 175 |
. . . . . . 7
|
| 30 | 18, 29 | exlimddv 1945 |
. . . . . 6
|
| 31 | 30 | ex 115 |
. . . . 5
|
| 32 | 31 | rexlimdva 2648 |
. . . 4
|
| 33 | 32 | imp 124 |
. . 3
|
| 34 | nn0suc 4696 |
. . . 4
| |
| 35 | 34 | ad2antrl 490 |
. . 3
|
| 36 | 13, 33, 35 | mpjaodan 803 |
. 2
|
| 37 | 2, 36 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-fin 6890 |
| This theorem is referenced by: findcard2 7051 findcard2s 7052 diffisn 7055 fimax2gtri 7063 elfi2 7139 elfir 7140 fiuni 7145 fifo 7147 4sqlem12 12925 |
| Copyright terms: Public domain | W3C validator |