ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0eln0 Unicode version

Theorem nn0eln0 4604
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nn0eln0  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )

Proof of Theorem nn0eln0
StepHypRef Expression
1 0elnn 4603 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
2 noel 3418 . . . . 5  |-  -.  (/)  e.  (/)
3 eleq2 2234 . . . . 5  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  (/)  e.  (/) ) )
42, 3mtbiri 670 . . . 4  |-  ( A  =  (/)  ->  -.  (/)  e.  A
)
5 nner 2344 . . . 4  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
64, 52falsed 697 . . 3  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
7 id 19 . . . 4  |-  ( (/)  e.  A  ->  (/)  e.  A
)
8 ne0i 3421 . . . 4  |-  ( (/)  e.  A  ->  A  =/=  (/) )
97, 82thd 174 . . 3  |-  ( (/)  e.  A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
106, 9jaoi 711 . 2  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
111, 10syl 14 1  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340   (/)c0 3414   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  nnmord  6496  bj-charfunr  13845
  Copyright terms: Public domain W3C validator