| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0eln0 | Unicode version | ||
| Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| Ref | Expression |
|---|---|
| nn0eln0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elnn 4656 |
. 2
| |
| 2 | noel 3455 |
. . . . 5
| |
| 3 | eleq2 2260 |
. . . . 5
| |
| 4 | 2, 3 | mtbiri 676 |
. . . 4
|
| 5 | nner 2371 |
. . . 4
| |
| 6 | 4, 5 | 2falsed 703 |
. . 3
|
| 7 | id 19 |
. . . 4
| |
| 8 | ne0i 3458 |
. . . 4
| |
| 9 | 7, 8 | 2thd 175 |
. . 3
|
| 10 | 6, 9 | jaoi 717 |
. 2
|
| 11 | 1, 10 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: nnmord 6584 bj-charfunr 15540 |
| Copyright terms: Public domain | W3C validator |