ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0eln0 Unicode version

Theorem nn0eln0 4528
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nn0eln0  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )

Proof of Theorem nn0eln0
StepHypRef Expression
1 0elnn 4527 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
2 noel 3362 . . . . 5  |-  -.  (/)  e.  (/)
3 eleq2 2201 . . . . 5  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  (/)  e.  (/) ) )
42, 3mtbiri 664 . . . 4  |-  ( A  =  (/)  ->  -.  (/)  e.  A
)
5 nner 2310 . . . 4  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
64, 52falsed 691 . . 3  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
7 id 19 . . . 4  |-  ( (/)  e.  A  ->  (/)  e.  A
)
8 ne0i 3364 . . . 4  |-  ( (/)  e.  A  ->  A  =/=  (/) )
97, 82thd 174 . . 3  |-  ( (/)  e.  A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
106, 9jaoi 705 . 2  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
111, 10syl 14 1  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480    =/= wne 2306   (/)c0 3358   omcom 4499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-suc 4288  df-iom 4500
This theorem is referenced by:  nnmord  6406  nnnninf  7016
  Copyright terms: Public domain W3C validator