ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0eln0 Unicode version

Theorem nn0eln0 4652
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nn0eln0  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )

Proof of Theorem nn0eln0
StepHypRef Expression
1 0elnn 4651 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
2 noel 3450 . . . . 5  |-  -.  (/)  e.  (/)
3 eleq2 2257 . . . . 5  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  (/)  e.  (/) ) )
42, 3mtbiri 676 . . . 4  |-  ( A  =  (/)  ->  -.  (/)  e.  A
)
5 nner 2368 . . . 4  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
64, 52falsed 703 . . 3  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
7 id 19 . . . 4  |-  ( (/)  e.  A  ->  (/)  e.  A
)
8 ne0i 3453 . . . 4  |-  ( (/)  e.  A  ->  A  =/=  (/) )
97, 82thd 175 . . 3  |-  ( (/)  e.  A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
106, 9jaoi 717 . 2  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
111, 10syl 14 1  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3446   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623
This theorem is referenced by:  nnmord  6570  bj-charfunr  15302
  Copyright terms: Public domain W3C validator