| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0eln0 | Unicode version | ||
| Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| Ref | Expression |
|---|---|
| nn0eln0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elnn 4685 |
. 2
| |
| 2 | noel 3472 |
. . . . 5
| |
| 3 | eleq2 2271 |
. . . . 5
| |
| 4 | 2, 3 | mtbiri 677 |
. . . 4
|
| 5 | nner 2382 |
. . . 4
| |
| 6 | 4, 5 | 2falsed 704 |
. . 3
|
| 7 | id 19 |
. . . 4
| |
| 8 | ne0i 3475 |
. . . 4
| |
| 9 | 7, 8 | 2thd 175 |
. . 3
|
| 10 | 6, 9 | jaoi 718 |
. 2
|
| 11 | 1, 10 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nnmord 6626 bj-charfunr 15945 |
| Copyright terms: Public domain | W3C validator |