ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0eln0 Unicode version

Theorem nn0eln0 4597
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nn0eln0  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )

Proof of Theorem nn0eln0
StepHypRef Expression
1 0elnn 4596 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
2 noel 3413 . . . . 5  |-  -.  (/)  e.  (/)
3 eleq2 2230 . . . . 5  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  (/)  e.  (/) ) )
42, 3mtbiri 665 . . . 4  |-  ( A  =  (/)  ->  -.  (/)  e.  A
)
5 nner 2340 . . . 4  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
64, 52falsed 692 . . 3  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
7 id 19 . . . 4  |-  ( (/)  e.  A  ->  (/)  e.  A
)
8 ne0i 3415 . . . 4  |-  ( (/)  e.  A  ->  A  =/=  (/) )
97, 82thd 174 . . 3  |-  ( (/)  e.  A  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
106, 9jaoi 706 . 2  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
111, 10syl 14 1  |-  ( A  e.  om  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336   (/)c0 3409   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  nnmord  6485  bj-charfunr  13692
  Copyright terms: Public domain W3C validator