ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nner GIF version

Theorem nner 2340
Description: Negation of inequality. (Contributed by Jim Kingdon, 23-Dec-2018.)
Assertion
Ref Expression
nner (𝐴 = 𝐵 → ¬ 𝐴𝐵)

Proof of Theorem nner
StepHypRef Expression
1 df-ne 2337 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
21biimpi 119 . 2 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
32con2i 617 1 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  nn0eln0  4597  funtpg  5239  fin0  6851  hashnncl  10709
  Copyright terms: Public domain W3C validator