ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orandc Unicode version

Theorem orandc 939
Description: Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.)
Assertion
Ref Expression
orandc  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) ) )

Proof of Theorem orandc
StepHypRef Expression
1 pm4.56 780 . 2  |-  ( ( -.  ph  /\  -.  ps ) 
<->  -.  ( ph  \/  ps ) )
2 dcn 842 . . . . 5  |-  (DECID  ph  -> DECID  -.  ph )
32adantr 276 . . . 4  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID  -.  ph )
4 dcn 842 . . . . 5  |-  (DECID  ps  -> DECID  -.  ps )
54adantl 277 . . . 4  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID  -.  ps )
6 dcan2 934 . . . 4  |-  (DECID  -.  ph  ->  (DECID  -.  ps  -> DECID  ( -.  ph  /\  -.  ps ) ) )
73, 5, 6sylc 62 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( -.  ph  /\  -.  ps ) )
8 dcor 935 . . . 4  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  \/  ps )
) )
98imp 124 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  \/  ps ) )
10 con2bidc 875 . . 3  |-  (DECID  ( -. 
ph  /\  -.  ps )  ->  (DECID  ( ph  \/  ps )  ->  ( ( ( -.  ph  /\  -.  ps ) 
<->  -.  ( ph  \/  ps ) )  <->  ( ( ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) ) ) ) )
117, 9, 10sylc 62 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ( -.  ph  /\  -.  ps ) 
<->  -.  ( ph  \/  ps ) )  <->  ( ( ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) ) ) )
121, 11mpbii 148 1  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by:  gcdaddm  11987
  Copyright terms: Public domain W3C validator