| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcdaddm | Unicode version | ||
| Description: Adding a multiple of one
operand of the |
| Ref | Expression |
|---|---|
| gcdaddm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds 12359 |
. . . . . . . . 9
| |
| 2 | 1 | 3adant1 1018 |
. . . . . . . 8
|
| 3 | 2 | simpld 112 |
. . . . . . 7
|
| 4 | simp1 1000 |
. . . . . . . . . 10
| |
| 5 | 1zzd 9419 |
. . . . . . . . . 10
| |
| 6 | gcdcl 12362 |
. . . . . . . . . . . 12
| |
| 7 | 6 | 3adant1 1018 |
. . . . . . . . . . 11
|
| 8 | 7 | nn0zd 9513 |
. . . . . . . . . 10
|
| 9 | simp2 1001 |
. . . . . . . . . 10
| |
| 10 | simp3 1002 |
. . . . . . . . . 10
| |
| 11 | dvds2ln 12210 |
. . . . . . . . . 10
| |
| 12 | 4, 5, 8, 9, 10, 11 | syl23anc 1257 |
. . . . . . . . 9
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . 8
|
| 14 | 10 | zcnd 9516 |
. . . . . . . . . 10
|
| 15 | 14 | mulid2d 8111 |
. . . . . . . . 9
|
| 16 | 15 | oveq2d 5973 |
. . . . . . . 8
|
| 17 | 13, 16 | breqtrd 4077 |
. . . . . . 7
|
| 18 | 3, 17 | jca 306 |
. . . . . 6
|
| 19 | 4, 9 | zmulcld 9521 |
. . . . . . . 8
|
| 20 | 19, 10 | zaddcld 9519 |
. . . . . . 7
|
| 21 | dvdslegcd 12360 |
. . . . . . . 8
| |
| 22 | 21 | ex 115 |
. . . . . . 7
|
| 23 | 8, 9, 20, 22 | syl3anc 1250 |
. . . . . 6
|
| 24 | 18, 23 | mpid 42 |
. . . . 5
|
| 25 | gcddvds 12359 |
. . . . . . . . 9
| |
| 26 | 9, 20, 25 | syl2anc 411 |
. . . . . . . 8
|
| 27 | 26 | simpld 112 |
. . . . . . 7
|
| 28 | 4 | znegcld 9517 |
. . . . . . . . . 10
|
| 29 | 9, 20 | gcdcld 12364 |
. . . . . . . . . . 11
|
| 30 | 29 | nn0zd 9513 |
. . . . . . . . . 10
|
| 31 | dvds2ln 12210 |
. . . . . . . . . 10
| |
| 32 | 28, 5, 30, 9, 20, 31 | syl23anc 1257 |
. . . . . . . . 9
|
| 33 | 26, 32 | mpd 13 |
. . . . . . . 8
|
| 34 | 4 | zcnd 9516 |
. . . . . . . . . . 11
|
| 35 | 9 | zcnd 9516 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | mulneg1d 8503 |
. . . . . . . . . 10
|
| 37 | 20 | zcnd 9516 |
. . . . . . . . . . 11
|
| 38 | 37 | mulid2d 8111 |
. . . . . . . . . 10
|
| 39 | 36, 38 | oveq12d 5975 |
. . . . . . . . 9
|
| 40 | 34, 35 | mulcld 8113 |
. . . . . . . . . . . . 13
|
| 41 | 40 | negcld 8390 |
. . . . . . . . . . . . 13
|
| 42 | 40, 41 | addcomd 8243 |
. . . . . . . . . . . 12
|
| 43 | 40 | negidd 8393 |
. . . . . . . . . . . 12
|
| 44 | 42, 43 | eqtr3d 2241 |
. . . . . . . . . . 11
|
| 45 | 44 | oveq1d 5972 |
. . . . . . . . . 10
|
| 46 | 41, 40, 14 | addassd 8115 |
. . . . . . . . . 10
|
| 47 | 14 | addlidd 8242 |
. . . . . . . . . 10
|
| 48 | 45, 46, 47 | 3eqtr3d 2247 |
. . . . . . . . 9
|
| 49 | 39, 48 | eqtrd 2239 |
. . . . . . . 8
|
| 50 | 33, 49 | breqtrd 4077 |
. . . . . . 7
|
| 51 | 27, 50 | jca 306 |
. . . . . 6
|
| 52 | dvdslegcd 12360 |
. . . . . . . 8
| |
| 53 | 52 | ex 115 |
. . . . . . 7
|
| 54 | 30, 53 | syld3an1 1296 |
. . . . . 6
|
| 55 | 51, 54 | mpid 42 |
. . . . 5
|
| 56 | 24, 55 | anim12d 335 |
. . . 4
|
| 57 | 7 | nn0red 9369 |
. . . . 5
|
| 58 | 29 | nn0red 9369 |
. . . . 5
|
| 59 | 57, 58 | letri3d 8208 |
. . . 4
|
| 60 | 56, 59 | sylibrd 169 |
. . 3
|
| 61 | 0zd 9404 |
. . . . . . 7
| |
| 62 | zdceq 9468 |
. . . . . . 7
| |
| 63 | 9, 61, 62 | syl2anc 411 |
. . . . . 6
|
| 64 | zdceq 9468 |
. . . . . . 7
| |
| 65 | 20, 61, 64 | syl2anc 411 |
. . . . . 6
|
| 66 | 63, 65 | dcand 935 |
. . . . 5
|
| 67 | zdceq 9468 |
. . . . . . 7
| |
| 68 | 10, 61, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | 63, 68 | dcand 935 |
. . . . 5
|
| 70 | orandc 942 |
. . . . 5
| |
| 71 | 66, 69, 70 | syl2anc 411 |
. . . 4
|
| 72 | simpr 110 |
. . . . . . . . . . . 12
| |
| 73 | 72 | oveq2d 5973 |
. . . . . . . . . . 11
|
| 74 | 34 | mul01d 8485 |
. . . . . . . . . . . 12
|
| 75 | 74 | adantr 276 |
. . . . . . . . . . 11
|
| 76 | 73, 75 | eqtrd 2239 |
. . . . . . . . . 10
|
| 77 | 76 | oveq1d 5972 |
. . . . . . . . 9
|
| 78 | 47 | adantr 276 |
. . . . . . . . 9
|
| 79 | 77, 78 | eqtrd 2239 |
. . . . . . . 8
|
| 80 | 79 | eqeq1d 2215 |
. . . . . . 7
|
| 81 | 80 | pm5.32da 452 |
. . . . . 6
|
| 82 | oveq12 5966 |
. . . . . . . . 9
| |
| 83 | 82 | adantl 277 |
. . . . . . . 8
|
| 84 | oveq12 5966 |
. . . . . . . . . 10
| |
| 85 | 81, 84 | biimtrrdi 164 |
. . . . . . . . 9
|
| 86 | 85 | imp 124 |
. . . . . . . 8
|
| 87 | 83, 86 | eqtr4d 2242 |
. . . . . . 7
|
| 88 | 87 | ex 115 |
. . . . . 6
|
| 89 | 81, 88 | sylbid 150 |
. . . . 5
|
| 90 | 89, 88 | jaod 719 |
. . . 4
|
| 91 | 71, 90 | sylbird 170 |
. . 3
|
| 92 | dcn 844 |
. . . . . 6
| |
| 93 | 66, 92 | syl 14 |
. . . . 5
|
| 94 | dcn 844 |
. . . . . 6
| |
| 95 | 69, 94 | syl 14 |
. . . . 5
|
| 96 | 93, 95 | dcand 935 |
. . . 4
|
| 97 | exmiddc 838 |
. . . 4
| |
| 98 | 96, 97 | syl 14 |
. . 3
|
| 99 | 60, 91, 98 | mpjaod 720 |
. 2
|
| 100 | 40, 14 | addcomd 8243 |
. . 3
|
| 101 | 100 | oveq2d 5973 |
. 2
|
| 102 | 99, 101 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 df-gcd 12350 |
| This theorem is referenced by: gcdadd 12381 gcdid 12382 modgcd 12387 gcdmultipled 12389 gcdmultiple 12416 pythagtriplem4 12666 gcdi 12818 |
| Copyright terms: Public domain | W3C validator |