ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdaddm Unicode version

Theorem gcdaddm 12176
Description: Adding a multiple of one operand of the  gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )

Proof of Theorem gcdaddm
StepHypRef Expression
1 gcddvds 12155 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
213adant1 1017 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  N ) )
32simpld 112 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  M )
4 simp1 999 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
5 1zzd 9370 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
6 gcdcl 12158 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
763adant1 1017 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e. 
NN0 )
87nn0zd 9463 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  ZZ )
9 simp2 1000 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
10 simp3 1001 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
11 dvds2ln 12006 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  1  e.  ZZ )  /\  ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) ) )
124, 5, 8, 9, 10, 11syl23anc 1256 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N )  -> 
( M  gcd  N
)  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) ) )
132, 12mpd 13 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) )
1410zcnd 9466 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1514mulid2d 8062 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  N )  =  N )
1615oveq2d 5941 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  ( 1  x.  N ) )  =  ( ( K  x.  M )  +  N ) )
1713, 16breqtrd 4060 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  N
) )
183, 17jca 306 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) ) )
194, 9zmulcld 9471 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
2019, 10zaddcld 9469 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  e.  ZZ )
21 dvdslegcd 12156 . . . . . . . 8  |-  ( ( ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ )  /\  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) )  -> 
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) )
2221ex 115 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ )  -> 
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  ( ( K  x.  M )  +  N ) )  ->  ( M  gcd  N )  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) ) )
238, 9, 20, 22syl3anc 1249 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) )  -> 
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) ) )
2418, 23mpid 42 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( M  gcd  N )  <_  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
25 gcddvds 12155 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( K  x.  M )  +  N
)  e.  ZZ )  ->  ( ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  (
( K  x.  M
)  +  N ) ) )
269, 20, 25syl2anc 411 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  ( ( K  x.  M )  +  N ) ) )
2726simpld 112 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M )
284znegcld 9467 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  -u K  e.  ZZ )
299, 20gcdcld 12160 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e. 
NN0 )
3029nn0zd 9463 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e.  ZZ )
31 dvds2ln 12006 . . . . . . . . . 10  |-  ( ( ( -u K  e.  ZZ  /\  1  e.  ZZ )  /\  (
( M  gcd  (
( K  x.  M
)  +  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ ) )  ->  ( ( ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( K  x.  M )  +  N
) )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( -u K  x.  M )  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) ) )
3228, 5, 30, 9, 20, 31syl23anc 1256 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  M  /\  ( M  gcd  (
( K  x.  M
)  +  N ) )  ||  ( ( K  x.  M )  +  N ) )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) ) )
3326, 32mpd 13 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( -u K  x.  M )  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) )
344zcnd 9466 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  CC )
359zcnd 9466 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3634, 35mulneg1d 8454 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u K  x.  M )  =  -u ( K  x.  M ) )
3720zcnd 9466 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  e.  CC )
3837mulid2d 8062 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  ( ( K  x.  M )  +  N ) )  =  ( ( K  x.  M )  +  N ) )
3936, 38oveq12d 5943 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) )  =  ( -u ( K  x.  M )  +  ( ( K  x.  M )  +  N ) ) )
4034, 35mulcld 8064 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  CC )
4140negcld 8341 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  -u ( K  x.  M )  e.  CC )
4240, 41addcomd 8194 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  -u ( K  x.  M )
)  =  ( -u ( K  x.  M
)  +  ( K  x.  M ) ) )
4340negidd 8344 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  -u ( K  x.  M )
)  =  0 )
4442, 43eqtr3d 2231 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( K  x.  M
)  +  ( K  x.  M ) )  =  0 )
4544oveq1d 5940 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u ( K  x.  M )  +  ( K  x.  M ) )  +  N )  =  ( 0  +  N ) )
4641, 40, 14addassd 8066 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u ( K  x.  M )  +  ( K  x.  M ) )  +  N )  =  ( -u ( K  x.  M )  +  ( ( K  x.  M )  +  N ) ) )
4714addlidd 8193 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  +  N )  =  N )
4845, 46, 473eqtr3d 2237 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( K  x.  M
)  +  ( ( K  x.  M )  +  N ) )  =  N )
4939, 48eqtrd 2229 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) )  =  N )
5033, 49breqtrd 4060 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  N )
5127, 50jca 306 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N ) )
52 dvdslegcd 12156 . . . . . . . 8  |-  ( ( ( ( M  gcd  ( ( K  x.  M )  +  N
) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  N
)  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  <_  ( M  gcd  N ) ) )
5352ex 115 . . . . . . 7  |-  ( ( ( M  gcd  (
( K  x.  M
)  +  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N )  -> 
( M  gcd  (
( K  x.  M
)  +  N ) )  <_  ( M  gcd  N ) ) ) )
5430, 53syld3an1 1295 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N )  -> 
( M  gcd  (
( K  x.  M
)  +  N ) )  <_  ( M  gcd  N ) ) ) )
5551, 54mpid 42 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  <_  ( M  gcd  N ) ) )
5624, 55anim12d 335 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  (
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) )  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  <_ 
( M  gcd  N
) ) ) )
577nn0red 9320 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  RR )
5829nn0red 9320 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e.  RR )
5957, 58letri3d 8159 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  =  ( M  gcd  ( ( K  x.  M )  +  N ) )  <->  ( ( M  gcd  N )  <_ 
( M  gcd  (
( K  x.  M
)  +  N ) )  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  <_ 
( M  gcd  N
) ) ) )
6056, 59sylibrd 169 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) ) )
61 0zd 9355 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
62 zdceq 9418 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
639, 61, 62syl2anc 411 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
64 zdceq 9418 . . . . . . 7  |-  ( ( ( ( K  x.  M )  +  N
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( ( K  x.  M
)  +  N )  =  0 )
6520, 61, 64syl2anc 411 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( ( K  x.  M )  +  N
)  =  0 )
6663, 65dcand 934 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )
67 zdceq 9418 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6810, 61, 67syl2anc 411 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
6963, 68dcand 934 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
70 orandc 941 . . . . 5  |-  ( (DECID  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\ DECID  ( M  =  0  /\  N  =  0 ) )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  <->  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
7166, 69, 70syl2anc 411 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  <->  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
72 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7372oveq2d 5941 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  M )  =  ( K  x.  0 ) )
7434mul01d 8436 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  0 )  =  0 )
7574adantr 276 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  0 )  =  0 )
7673, 75eqtrd 2229 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  M )  =  0 )
7776oveq1d 5940 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( K  x.  M )  +  N )  =  ( 0  +  N ) )
7847adantr 276 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( 0  +  N )  =  N )
7977, 78eqtrd 2229 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( K  x.  M )  +  N )  =  N )
8079eqeq1d 2205 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( (
( K  x.  M
)  +  N )  =  0  <->  N  = 
0 ) )
8180pm5.32da 452 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  <->  ( M  =  0  /\  N  =  0 ) ) )
82 oveq12 5934 . . . . . . . . 9  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( 0  gcd  0 ) )
8382adantl 277 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( 0  gcd  0
) )
84 oveq12 5934 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  =  ( 0  gcd  0 ) )
8581, 84biimtrrdi 164 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  N  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  =  ( 0  gcd  0 ) ) )
8685imp 124 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  =  ( 0  gcd  0
) )
8783, 86eqtr4d 2232 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) )
8887ex 115 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
8981, 88sylbid 150 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9089, 88jaod 718 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9171, 90sylbird 170 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) ) )
92 dcn 843 . . . . . 6  |-  (DECID  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  -> DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 ) )
9366, 92syl 14 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )
94 dcn 843 . . . . . 6  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> DECID  -.  ( M  =  0  /\  N  =  0
) )
9569, 94syl 14 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  -.  ( M  =  0  /\  N  =  0 ) )
9693, 95dcand 934 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )
97 exmiddc 837 . . . 4  |-  (DECID  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  \/  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
9896, 97syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  \/  -.  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
9960, 91, 98mpjaod 719 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) )
10040, 14addcomd 8194 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  =  ( N  +  ( K  x.  M
) ) )
101100oveq2d 5941 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
10299, 101eqtrd 2229 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    <_ cle 8079   -ucneg 8215   NN0cn0 9266   ZZcz 9343    || cdvds 11969    gcd cgcd 12145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146
This theorem is referenced by:  gcdadd  12177  gcdid  12178  modgcd  12183  gcdmultipled  12185  gcdmultiple  12212  pythagtriplem4  12462  gcdi  12614
  Copyright terms: Public domain W3C validator