Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gcdaddm | Unicode version |
Description: Adding a multiple of one operand of the operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
gcdaddm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcddvds 11907 | . . . . . . . . 9 | |
2 | 1 | 3adant1 1010 | . . . . . . . 8 |
3 | 2 | simpld 111 | . . . . . . 7 |
4 | simp1 992 | . . . . . . . . . 10 | |
5 | 1zzd 9228 | . . . . . . . . . 10 | |
6 | gcdcl 11910 | . . . . . . . . . . . 12 | |
7 | 6 | 3adant1 1010 | . . . . . . . . . . 11 |
8 | 7 | nn0zd 9321 | . . . . . . . . . 10 |
9 | simp2 993 | . . . . . . . . . 10 | |
10 | simp3 994 | . . . . . . . . . 10 | |
11 | dvds2ln 11775 | . . . . . . . . . 10 | |
12 | 4, 5, 8, 9, 10, 11 | syl23anc 1240 | . . . . . . . . 9 |
13 | 2, 12 | mpd 13 | . . . . . . . 8 |
14 | 10 | zcnd 9324 | . . . . . . . . . 10 |
15 | 14 | mulid2d 7927 | . . . . . . . . 9 |
16 | 15 | oveq2d 5867 | . . . . . . . 8 |
17 | 13, 16 | breqtrd 4013 | . . . . . . 7 |
18 | 3, 17 | jca 304 | . . . . . 6 |
19 | 4, 9 | zmulcld 9329 | . . . . . . . 8 |
20 | 19, 10 | zaddcld 9327 | . . . . . . 7 |
21 | dvdslegcd 11908 | . . . . . . . 8 | |
22 | 21 | ex 114 | . . . . . . 7 |
23 | 8, 9, 20, 22 | syl3anc 1233 | . . . . . 6 |
24 | 18, 23 | mpid 42 | . . . . 5 |
25 | gcddvds 11907 | . . . . . . . . 9 | |
26 | 9, 20, 25 | syl2anc 409 | . . . . . . . 8 |
27 | 26 | simpld 111 | . . . . . . 7 |
28 | 4 | znegcld 9325 | . . . . . . . . . 10 |
29 | 9, 20 | gcdcld 11912 | . . . . . . . . . . 11 |
30 | 29 | nn0zd 9321 | . . . . . . . . . 10 |
31 | dvds2ln 11775 | . . . . . . . . . 10 | |
32 | 28, 5, 30, 9, 20, 31 | syl23anc 1240 | . . . . . . . . 9 |
33 | 26, 32 | mpd 13 | . . . . . . . 8 |
34 | 4 | zcnd 9324 | . . . . . . . . . . 11 |
35 | 9 | zcnd 9324 | . . . . . . . . . . 11 |
36 | 34, 35 | mulneg1d 8319 | . . . . . . . . . 10 |
37 | 20 | zcnd 9324 | . . . . . . . . . . 11 |
38 | 37 | mulid2d 7927 | . . . . . . . . . 10 |
39 | 36, 38 | oveq12d 5869 | . . . . . . . . 9 |
40 | 34, 35 | mulcld 7929 | . . . . . . . . . . . . 13 |
41 | 40 | negcld 8206 | . . . . . . . . . . . . 13 |
42 | 40, 41 | addcomd 8059 | . . . . . . . . . . . 12 |
43 | 40 | negidd 8209 | . . . . . . . . . . . 12 |
44 | 42, 43 | eqtr3d 2205 | . . . . . . . . . . 11 |
45 | 44 | oveq1d 5866 | . . . . . . . . . 10 |
46 | 41, 40, 14 | addassd 7931 | . . . . . . . . . 10 |
47 | 14 | addid2d 8058 | . . . . . . . . . 10 |
48 | 45, 46, 47 | 3eqtr3d 2211 | . . . . . . . . 9 |
49 | 39, 48 | eqtrd 2203 | . . . . . . . 8 |
50 | 33, 49 | breqtrd 4013 | . . . . . . 7 |
51 | 27, 50 | jca 304 | . . . . . 6 |
52 | dvdslegcd 11908 | . . . . . . . 8 | |
53 | 52 | ex 114 | . . . . . . 7 |
54 | 30, 9, 10, 53 | syl3anc 1233 | . . . . . 6 |
55 | 51, 54 | mpid 42 | . . . . 5 |
56 | 24, 55 | anim12d 333 | . . . 4 |
57 | 7 | nn0red 9178 | . . . . 5 |
58 | 29 | nn0red 9178 | . . . . 5 |
59 | 57, 58 | letri3d 8024 | . . . 4 |
60 | 56, 59 | sylibrd 168 | . . 3 |
61 | 0zd 9213 | . . . . . . 7 | |
62 | zdceq 9276 | . . . . . . 7 DECID | |
63 | 9, 61, 62 | syl2anc 409 | . . . . . 6 DECID |
64 | zdceq 9276 | . . . . . . 7 DECID | |
65 | 20, 61, 64 | syl2anc 409 | . . . . . 6 DECID |
66 | dcan2 929 | . . . . . 6 DECID DECID DECID | |
67 | 63, 65, 66 | sylc 62 | . . . . 5 DECID |
68 | zdceq 9276 | . . . . . . 7 DECID | |
69 | 10, 61, 68 | syl2anc 409 | . . . . . 6 DECID |
70 | dcan2 929 | . . . . . 6 DECID DECID DECID | |
71 | 63, 69, 70 | sylc 62 | . . . . 5 DECID |
72 | orandc 934 | . . . . 5 DECID DECID | |
73 | 67, 71, 72 | syl2anc 409 | . . . 4 |
74 | simpr 109 | . . . . . . . . . . . 12 | |
75 | 74 | oveq2d 5867 | . . . . . . . . . . 11 |
76 | 34 | mul01d 8301 | . . . . . . . . . . . 12 |
77 | 76 | adantr 274 | . . . . . . . . . . 11 |
78 | 75, 77 | eqtrd 2203 | . . . . . . . . . 10 |
79 | 78 | oveq1d 5866 | . . . . . . . . 9 |
80 | 47 | adantr 274 | . . . . . . . . 9 |
81 | 79, 80 | eqtrd 2203 | . . . . . . . 8 |
82 | 81 | eqeq1d 2179 | . . . . . . 7 |
83 | 82 | pm5.32da 449 | . . . . . 6 |
84 | oveq12 5860 | . . . . . . . . 9 | |
85 | 84 | adantl 275 | . . . . . . . 8 |
86 | oveq12 5860 | . . . . . . . . . 10 | |
87 | 83, 86 | syl6bir 163 | . . . . . . . . 9 |
88 | 87 | imp 123 | . . . . . . . 8 |
89 | 85, 88 | eqtr4d 2206 | . . . . . . 7 |
90 | 89 | ex 114 | . . . . . 6 |
91 | 83, 90 | sylbid 149 | . . . . 5 |
92 | 91, 90 | jaod 712 | . . . 4 |
93 | 73, 92 | sylbird 169 | . . 3 |
94 | dcn 837 | . . . . . 6 DECID DECID | |
95 | 67, 94 | syl 14 | . . . . 5 DECID |
96 | dcn 837 | . . . . . 6 DECID DECID | |
97 | 71, 96 | syl 14 | . . . . 5 DECID |
98 | dcan2 929 | . . . . 5 DECID DECID DECID | |
99 | 95, 97, 98 | sylc 62 | . . . 4 DECID |
100 | exmiddc 831 | . . . 4 DECID | |
101 | 99, 100 | syl 14 | . . 3 |
102 | 60, 93, 101 | mpjaod 713 | . 2 |
103 | 40, 14 | addcomd 8059 | . . 3 |
104 | 103 | oveq2d 5867 | . 2 |
105 | 102, 104 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 class class class wbr 3987 (class class class)co 5851 cc0 7763 c1 7764 caddc 7766 cmul 7768 cle 7944 cneg 8080 cn0 9124 cz 9201 cdvds 11738 cgcd 11886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-sup 6958 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-fz 9955 df-fzo 10088 df-fl 10215 df-mod 10268 df-seqfrec 10391 df-exp 10465 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-dvds 11739 df-gcd 11887 |
This theorem is referenced by: gcdadd 11929 gcdid 11930 modgcd 11935 gcdmultipled 11937 gcdmultiple 11964 pythagtriplem4 12211 |
Copyright terms: Public domain | W3C validator |