| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcdaddm | Unicode version | ||
| Description: Adding a multiple of one
operand of the |
| Ref | Expression |
|---|---|
| gcdaddm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds 12255 |
. . . . . . . . 9
| |
| 2 | 1 | 3adant1 1017 |
. . . . . . . 8
|
| 3 | 2 | simpld 112 |
. . . . . . 7
|
| 4 | simp1 999 |
. . . . . . . . . 10
| |
| 5 | 1zzd 9398 |
. . . . . . . . . 10
| |
| 6 | gcdcl 12258 |
. . . . . . . . . . . 12
| |
| 7 | 6 | 3adant1 1017 |
. . . . . . . . . . 11
|
| 8 | 7 | nn0zd 9492 |
. . . . . . . . . 10
|
| 9 | simp2 1000 |
. . . . . . . . . 10
| |
| 10 | simp3 1001 |
. . . . . . . . . 10
| |
| 11 | dvds2ln 12106 |
. . . . . . . . . 10
| |
| 12 | 4, 5, 8, 9, 10, 11 | syl23anc 1256 |
. . . . . . . . 9
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . 8
|
| 14 | 10 | zcnd 9495 |
. . . . . . . . . 10
|
| 15 | 14 | mulid2d 8090 |
. . . . . . . . 9
|
| 16 | 15 | oveq2d 5959 |
. . . . . . . 8
|
| 17 | 13, 16 | breqtrd 4069 |
. . . . . . 7
|
| 18 | 3, 17 | jca 306 |
. . . . . 6
|
| 19 | 4, 9 | zmulcld 9500 |
. . . . . . . 8
|
| 20 | 19, 10 | zaddcld 9498 |
. . . . . . 7
|
| 21 | dvdslegcd 12256 |
. . . . . . . 8
| |
| 22 | 21 | ex 115 |
. . . . . . 7
|
| 23 | 8, 9, 20, 22 | syl3anc 1249 |
. . . . . 6
|
| 24 | 18, 23 | mpid 42 |
. . . . 5
|
| 25 | gcddvds 12255 |
. . . . . . . . 9
| |
| 26 | 9, 20, 25 | syl2anc 411 |
. . . . . . . 8
|
| 27 | 26 | simpld 112 |
. . . . . . 7
|
| 28 | 4 | znegcld 9496 |
. . . . . . . . . 10
|
| 29 | 9, 20 | gcdcld 12260 |
. . . . . . . . . . 11
|
| 30 | 29 | nn0zd 9492 |
. . . . . . . . . 10
|
| 31 | dvds2ln 12106 |
. . . . . . . . . 10
| |
| 32 | 28, 5, 30, 9, 20, 31 | syl23anc 1256 |
. . . . . . . . 9
|
| 33 | 26, 32 | mpd 13 |
. . . . . . . 8
|
| 34 | 4 | zcnd 9495 |
. . . . . . . . . . 11
|
| 35 | 9 | zcnd 9495 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | mulneg1d 8482 |
. . . . . . . . . 10
|
| 37 | 20 | zcnd 9495 |
. . . . . . . . . . 11
|
| 38 | 37 | mulid2d 8090 |
. . . . . . . . . 10
|
| 39 | 36, 38 | oveq12d 5961 |
. . . . . . . . 9
|
| 40 | 34, 35 | mulcld 8092 |
. . . . . . . . . . . . 13
|
| 41 | 40 | negcld 8369 |
. . . . . . . . . . . . 13
|
| 42 | 40, 41 | addcomd 8222 |
. . . . . . . . . . . 12
|
| 43 | 40 | negidd 8372 |
. . . . . . . . . . . 12
|
| 44 | 42, 43 | eqtr3d 2239 |
. . . . . . . . . . 11
|
| 45 | 44 | oveq1d 5958 |
. . . . . . . . . 10
|
| 46 | 41, 40, 14 | addassd 8094 |
. . . . . . . . . 10
|
| 47 | 14 | addlidd 8221 |
. . . . . . . . . 10
|
| 48 | 45, 46, 47 | 3eqtr3d 2245 |
. . . . . . . . 9
|
| 49 | 39, 48 | eqtrd 2237 |
. . . . . . . 8
|
| 50 | 33, 49 | breqtrd 4069 |
. . . . . . 7
|
| 51 | 27, 50 | jca 306 |
. . . . . 6
|
| 52 | dvdslegcd 12256 |
. . . . . . . 8
| |
| 53 | 52 | ex 115 |
. . . . . . 7
|
| 54 | 30, 53 | syld3an1 1295 |
. . . . . 6
|
| 55 | 51, 54 | mpid 42 |
. . . . 5
|
| 56 | 24, 55 | anim12d 335 |
. . . 4
|
| 57 | 7 | nn0red 9348 |
. . . . 5
|
| 58 | 29 | nn0red 9348 |
. . . . 5
|
| 59 | 57, 58 | letri3d 8187 |
. . . 4
|
| 60 | 56, 59 | sylibrd 169 |
. . 3
|
| 61 | 0zd 9383 |
. . . . . . 7
| |
| 62 | zdceq 9447 |
. . . . . . 7
| |
| 63 | 9, 61, 62 | syl2anc 411 |
. . . . . 6
|
| 64 | zdceq 9447 |
. . . . . . 7
| |
| 65 | 20, 61, 64 | syl2anc 411 |
. . . . . 6
|
| 66 | 63, 65 | dcand 934 |
. . . . 5
|
| 67 | zdceq 9447 |
. . . . . . 7
| |
| 68 | 10, 61, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | 63, 68 | dcand 934 |
. . . . 5
|
| 70 | orandc 941 |
. . . . 5
| |
| 71 | 66, 69, 70 | syl2anc 411 |
. . . 4
|
| 72 | simpr 110 |
. . . . . . . . . . . 12
| |
| 73 | 72 | oveq2d 5959 |
. . . . . . . . . . 11
|
| 74 | 34 | mul01d 8464 |
. . . . . . . . . . . 12
|
| 75 | 74 | adantr 276 |
. . . . . . . . . . 11
|
| 76 | 73, 75 | eqtrd 2237 |
. . . . . . . . . 10
|
| 77 | 76 | oveq1d 5958 |
. . . . . . . . 9
|
| 78 | 47 | adantr 276 |
. . . . . . . . 9
|
| 79 | 77, 78 | eqtrd 2237 |
. . . . . . . 8
|
| 80 | 79 | eqeq1d 2213 |
. . . . . . 7
|
| 81 | 80 | pm5.32da 452 |
. . . . . 6
|
| 82 | oveq12 5952 |
. . . . . . . . 9
| |
| 83 | 82 | adantl 277 |
. . . . . . . 8
|
| 84 | oveq12 5952 |
. . . . . . . . . 10
| |
| 85 | 81, 84 | biimtrrdi 164 |
. . . . . . . . 9
|
| 86 | 85 | imp 124 |
. . . . . . . 8
|
| 87 | 83, 86 | eqtr4d 2240 |
. . . . . . 7
|
| 88 | 87 | ex 115 |
. . . . . 6
|
| 89 | 81, 88 | sylbid 150 |
. . . . 5
|
| 90 | 89, 88 | jaod 718 |
. . . 4
|
| 91 | 71, 90 | sylbird 170 |
. . 3
|
| 92 | dcn 843 |
. . . . . 6
| |
| 93 | 66, 92 | syl 14 |
. . . . 5
|
| 94 | dcn 843 |
. . . . . 6
| |
| 95 | 69, 94 | syl 14 |
. . . . 5
|
| 96 | 93, 95 | dcand 934 |
. . . 4
|
| 97 | exmiddc 837 |
. . . 4
| |
| 98 | 96, 97 | syl 14 |
. . 3
|
| 99 | 60, 91, 98 | mpjaod 719 |
. 2
|
| 100 | 40, 14 | addcomd 8222 |
. . 3
|
| 101 | 100 | oveq2d 5959 |
. 2
|
| 102 | 99, 101 | eqtrd 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-fl 10411 df-mod 10466 df-seqfrec 10591 df-exp 10682 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-dvds 12070 df-gcd 12246 |
| This theorem is referenced by: gcdadd 12277 gcdid 12278 modgcd 12283 gcdmultipled 12285 gcdmultiple 12312 pythagtriplem4 12562 gcdi 12714 |
| Copyright terms: Public domain | W3C validator |