| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcdaddm | Unicode version | ||
| Description: Adding a multiple of one
operand of the |
| Ref | Expression |
|---|---|
| gcdaddm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds 12130 |
. . . . . . . . 9
| |
| 2 | 1 | 3adant1 1017 |
. . . . . . . 8
|
| 3 | 2 | simpld 112 |
. . . . . . 7
|
| 4 | simp1 999 |
. . . . . . . . . 10
| |
| 5 | 1zzd 9353 |
. . . . . . . . . 10
| |
| 6 | gcdcl 12133 |
. . . . . . . . . . . 12
| |
| 7 | 6 | 3adant1 1017 |
. . . . . . . . . . 11
|
| 8 | 7 | nn0zd 9446 |
. . . . . . . . . 10
|
| 9 | simp2 1000 |
. . . . . . . . . 10
| |
| 10 | simp3 1001 |
. . . . . . . . . 10
| |
| 11 | dvds2ln 11989 |
. . . . . . . . . 10
| |
| 12 | 4, 5, 8, 9, 10, 11 | syl23anc 1256 |
. . . . . . . . 9
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . 8
|
| 14 | 10 | zcnd 9449 |
. . . . . . . . . 10
|
| 15 | 14 | mulid2d 8045 |
. . . . . . . . 9
|
| 16 | 15 | oveq2d 5938 |
. . . . . . . 8
|
| 17 | 13, 16 | breqtrd 4059 |
. . . . . . 7
|
| 18 | 3, 17 | jca 306 |
. . . . . 6
|
| 19 | 4, 9 | zmulcld 9454 |
. . . . . . . 8
|
| 20 | 19, 10 | zaddcld 9452 |
. . . . . . 7
|
| 21 | dvdslegcd 12131 |
. . . . . . . 8
| |
| 22 | 21 | ex 115 |
. . . . . . 7
|
| 23 | 8, 9, 20, 22 | syl3anc 1249 |
. . . . . 6
|
| 24 | 18, 23 | mpid 42 |
. . . . 5
|
| 25 | gcddvds 12130 |
. . . . . . . . 9
| |
| 26 | 9, 20, 25 | syl2anc 411 |
. . . . . . . 8
|
| 27 | 26 | simpld 112 |
. . . . . . 7
|
| 28 | 4 | znegcld 9450 |
. . . . . . . . . 10
|
| 29 | 9, 20 | gcdcld 12135 |
. . . . . . . . . . 11
|
| 30 | 29 | nn0zd 9446 |
. . . . . . . . . 10
|
| 31 | dvds2ln 11989 |
. . . . . . . . . 10
| |
| 32 | 28, 5, 30, 9, 20, 31 | syl23anc 1256 |
. . . . . . . . 9
|
| 33 | 26, 32 | mpd 13 |
. . . . . . . 8
|
| 34 | 4 | zcnd 9449 |
. . . . . . . . . . 11
|
| 35 | 9 | zcnd 9449 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | mulneg1d 8437 |
. . . . . . . . . 10
|
| 37 | 20 | zcnd 9449 |
. . . . . . . . . . 11
|
| 38 | 37 | mulid2d 8045 |
. . . . . . . . . 10
|
| 39 | 36, 38 | oveq12d 5940 |
. . . . . . . . 9
|
| 40 | 34, 35 | mulcld 8047 |
. . . . . . . . . . . . 13
|
| 41 | 40 | negcld 8324 |
. . . . . . . . . . . . 13
|
| 42 | 40, 41 | addcomd 8177 |
. . . . . . . . . . . 12
|
| 43 | 40 | negidd 8327 |
. . . . . . . . . . . 12
|
| 44 | 42, 43 | eqtr3d 2231 |
. . . . . . . . . . 11
|
| 45 | 44 | oveq1d 5937 |
. . . . . . . . . 10
|
| 46 | 41, 40, 14 | addassd 8049 |
. . . . . . . . . 10
|
| 47 | 14 | addlidd 8176 |
. . . . . . . . . 10
|
| 48 | 45, 46, 47 | 3eqtr3d 2237 |
. . . . . . . . 9
|
| 49 | 39, 48 | eqtrd 2229 |
. . . . . . . 8
|
| 50 | 33, 49 | breqtrd 4059 |
. . . . . . 7
|
| 51 | 27, 50 | jca 306 |
. . . . . 6
|
| 52 | dvdslegcd 12131 |
. . . . . . . 8
| |
| 53 | 52 | ex 115 |
. . . . . . 7
|
| 54 | 30, 53 | syld3an1 1295 |
. . . . . 6
|
| 55 | 51, 54 | mpid 42 |
. . . . 5
|
| 56 | 24, 55 | anim12d 335 |
. . . 4
|
| 57 | 7 | nn0red 9303 |
. . . . 5
|
| 58 | 29 | nn0red 9303 |
. . . . 5
|
| 59 | 57, 58 | letri3d 8142 |
. . . 4
|
| 60 | 56, 59 | sylibrd 169 |
. . 3
|
| 61 | 0zd 9338 |
. . . . . . 7
| |
| 62 | zdceq 9401 |
. . . . . . 7
| |
| 63 | 9, 61, 62 | syl2anc 411 |
. . . . . 6
|
| 64 | zdceq 9401 |
. . . . . . 7
| |
| 65 | 20, 61, 64 | syl2anc 411 |
. . . . . 6
|
| 66 | 63, 65 | dcand 934 |
. . . . 5
|
| 67 | zdceq 9401 |
. . . . . . 7
| |
| 68 | 10, 61, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | 63, 68 | dcand 934 |
. . . . 5
|
| 70 | orandc 941 |
. . . . 5
| |
| 71 | 66, 69, 70 | syl2anc 411 |
. . . 4
|
| 72 | simpr 110 |
. . . . . . . . . . . 12
| |
| 73 | 72 | oveq2d 5938 |
. . . . . . . . . . 11
|
| 74 | 34 | mul01d 8419 |
. . . . . . . . . . . 12
|
| 75 | 74 | adantr 276 |
. . . . . . . . . . 11
|
| 76 | 73, 75 | eqtrd 2229 |
. . . . . . . . . 10
|
| 77 | 76 | oveq1d 5937 |
. . . . . . . . 9
|
| 78 | 47 | adantr 276 |
. . . . . . . . 9
|
| 79 | 77, 78 | eqtrd 2229 |
. . . . . . . 8
|
| 80 | 79 | eqeq1d 2205 |
. . . . . . 7
|
| 81 | 80 | pm5.32da 452 |
. . . . . 6
|
| 82 | oveq12 5931 |
. . . . . . . . 9
| |
| 83 | 82 | adantl 277 |
. . . . . . . 8
|
| 84 | oveq12 5931 |
. . . . . . . . . 10
| |
| 85 | 81, 84 | biimtrrdi 164 |
. . . . . . . . 9
|
| 86 | 85 | imp 124 |
. . . . . . . 8
|
| 87 | 83, 86 | eqtr4d 2232 |
. . . . . . 7
|
| 88 | 87 | ex 115 |
. . . . . 6
|
| 89 | 81, 88 | sylbid 150 |
. . . . 5
|
| 90 | 89, 88 | jaod 718 |
. . . 4
|
| 91 | 71, 90 | sylbird 170 |
. . 3
|
| 92 | dcn 843 |
. . . . . 6
| |
| 93 | 66, 92 | syl 14 |
. . . . 5
|
| 94 | dcn 843 |
. . . . . 6
| |
| 95 | 69, 94 | syl 14 |
. . . . 5
|
| 96 | 93, 95 | dcand 934 |
. . . 4
|
| 97 | exmiddc 837 |
. . . 4
| |
| 98 | 96, 97 | syl 14 |
. . 3
|
| 99 | 60, 91, 98 | mpjaod 719 |
. 2
|
| 100 | 40, 14 | addcomd 8177 |
. . 3
|
| 101 | 100 | oveq2d 5938 |
. 2
|
| 102 | 99, 101 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 |
| This theorem is referenced by: gcdadd 12152 gcdid 12153 modgcd 12158 gcdmultipled 12160 gcdmultiple 12187 pythagtriplem4 12437 gcdi 12589 |
| Copyright terms: Public domain | W3C validator |