ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdaddm Unicode version

Theorem gcdaddm 11939
Description: Adding a multiple of one operand of the  gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )

Proof of Theorem gcdaddm
StepHypRef Expression
1 gcddvds 11918 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
213adant1 1010 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  N ) )
32simpld 111 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  M )
4 simp1 992 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
5 1zzd 9239 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
6 gcdcl 11921 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
763adant1 1010 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e. 
NN0 )
87nn0zd 9332 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  ZZ )
9 simp2 993 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
10 simp3 994 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
11 dvds2ln 11786 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  1  e.  ZZ )  /\  ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) ) )
124, 5, 8, 9, 10, 11syl23anc 1240 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N )  -> 
( M  gcd  N
)  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) ) )
132, 12mpd 13 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) )
1410zcnd 9335 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1514mulid2d 7938 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  N )  =  N )
1615oveq2d 5869 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  ( 1  x.  N ) )  =  ( ( K  x.  M )  +  N ) )
1713, 16breqtrd 4015 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  N
) )
183, 17jca 304 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) ) )
194, 9zmulcld 9340 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
2019, 10zaddcld 9338 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  e.  ZZ )
21 dvdslegcd 11919 . . . . . . . 8  |-  ( ( ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ )  /\  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) )  -> 
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) )
2221ex 114 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ )  -> 
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  ( ( K  x.  M )  +  N ) )  ->  ( M  gcd  N )  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) ) )
238, 9, 20, 22syl3anc 1233 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) )  -> 
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) ) )
2418, 23mpid 42 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( M  gcd  N )  <_  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
25 gcddvds 11918 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( K  x.  M )  +  N
)  e.  ZZ )  ->  ( ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  (
( K  x.  M
)  +  N ) ) )
269, 20, 25syl2anc 409 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  ( ( K  x.  M )  +  N ) ) )
2726simpld 111 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M )
284znegcld 9336 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  -u K  e.  ZZ )
299, 20gcdcld 11923 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e. 
NN0 )
3029nn0zd 9332 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e.  ZZ )
31 dvds2ln 11786 . . . . . . . . . 10  |-  ( ( ( -u K  e.  ZZ  /\  1  e.  ZZ )  /\  (
( M  gcd  (
( K  x.  M
)  +  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ ) )  ->  ( ( ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( K  x.  M )  +  N
) )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( -u K  x.  M )  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) ) )
3228, 5, 30, 9, 20, 31syl23anc 1240 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  M  /\  ( M  gcd  (
( K  x.  M
)  +  N ) )  ||  ( ( K  x.  M )  +  N ) )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) ) )
3326, 32mpd 13 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( -u K  x.  M )  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) )
344zcnd 9335 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  CC )
359zcnd 9335 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3634, 35mulneg1d 8330 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u K  x.  M )  =  -u ( K  x.  M ) )
3720zcnd 9335 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  e.  CC )
3837mulid2d 7938 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  ( ( K  x.  M )  +  N ) )  =  ( ( K  x.  M )  +  N ) )
3936, 38oveq12d 5871 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) )  =  ( -u ( K  x.  M )  +  ( ( K  x.  M )  +  N ) ) )
4034, 35mulcld 7940 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  CC )
4140negcld 8217 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  -u ( K  x.  M )  e.  CC )
4240, 41addcomd 8070 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  -u ( K  x.  M )
)  =  ( -u ( K  x.  M
)  +  ( K  x.  M ) ) )
4340negidd 8220 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  -u ( K  x.  M )
)  =  0 )
4442, 43eqtr3d 2205 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( K  x.  M
)  +  ( K  x.  M ) )  =  0 )
4544oveq1d 5868 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u ( K  x.  M )  +  ( K  x.  M ) )  +  N )  =  ( 0  +  N ) )
4641, 40, 14addassd 7942 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u ( K  x.  M )  +  ( K  x.  M ) )  +  N )  =  ( -u ( K  x.  M )  +  ( ( K  x.  M )  +  N ) ) )
4714addid2d 8069 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  +  N )  =  N )
4845, 46, 473eqtr3d 2211 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( K  x.  M
)  +  ( ( K  x.  M )  +  N ) )  =  N )
4939, 48eqtrd 2203 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) )  =  N )
5033, 49breqtrd 4015 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  N )
5127, 50jca 304 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N ) )
52 dvdslegcd 11919 . . . . . . . 8  |-  ( ( ( ( M  gcd  ( ( K  x.  M )  +  N
) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  N
)  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  <_  ( M  gcd  N ) ) )
5352ex 114 . . . . . . 7  |-  ( ( ( M  gcd  (
( K  x.  M
)  +  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N )  -> 
( M  gcd  (
( K  x.  M
)  +  N ) )  <_  ( M  gcd  N ) ) ) )
5430, 9, 10, 53syl3anc 1233 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N )  -> 
( M  gcd  (
( K  x.  M
)  +  N ) )  <_  ( M  gcd  N ) ) ) )
5551, 54mpid 42 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  <_  ( M  gcd  N ) ) )
5624, 55anim12d 333 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  (
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) )  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  <_ 
( M  gcd  N
) ) ) )
577nn0red 9189 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  RR )
5829nn0red 9189 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e.  RR )
5957, 58letri3d 8035 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  =  ( M  gcd  ( ( K  x.  M )  +  N ) )  <->  ( ( M  gcd  N )  <_ 
( M  gcd  (
( K  x.  M
)  +  N ) )  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  <_ 
( M  gcd  N
) ) ) )
6056, 59sylibrd 168 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) ) )
61 0zd 9224 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
62 zdceq 9287 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
639, 61, 62syl2anc 409 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
64 zdceq 9287 . . . . . . 7  |-  ( ( ( ( K  x.  M )  +  N
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( ( K  x.  M
)  +  N )  =  0 )
6520, 61, 64syl2anc 409 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( ( K  x.  M )  +  N
)  =  0 )
66 dcan2 929 . . . . . 6  |-  (DECID  M  =  0  ->  (DECID  ( ( K  x.  M )  +  N )  =  0  -> DECID 
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) ) )
6763, 65, 66sylc 62 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )
68 zdceq 9287 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6910, 61, 68syl2anc 409 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
70 dcan2 929 . . . . . 6  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  /\  N  =  0 ) ) )
7163, 69, 70sylc 62 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
72 orandc 934 . . . . 5  |-  ( (DECID  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\ DECID  ( M  =  0  /\  N  =  0 ) )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  <->  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
7367, 71, 72syl2anc 409 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  <->  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
74 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7574oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  M )  =  ( K  x.  0 ) )
7634mul01d 8312 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  0 )  =  0 )
7776adantr 274 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  0 )  =  0 )
7875, 77eqtrd 2203 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  M )  =  0 )
7978oveq1d 5868 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( K  x.  M )  +  N )  =  ( 0  +  N ) )
8047adantr 274 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( 0  +  N )  =  N )
8179, 80eqtrd 2203 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( K  x.  M )  +  N )  =  N )
8281eqeq1d 2179 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( (
( K  x.  M
)  +  N )  =  0  <->  N  = 
0 ) )
8382pm5.32da 449 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  <->  ( M  =  0  /\  N  =  0 ) ) )
84 oveq12 5862 . . . . . . . . 9  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( 0  gcd  0 ) )
8584adantl 275 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( 0  gcd  0
) )
86 oveq12 5862 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  =  ( 0  gcd  0 ) )
8783, 86syl6bir 163 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  N  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  =  ( 0  gcd  0 ) ) )
8887imp 123 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  =  ( 0  gcd  0
) )
8985, 88eqtr4d 2206 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) )
9089ex 114 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9183, 90sylbid 149 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9291, 90jaod 712 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9373, 92sylbird 169 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) ) )
94 dcn 837 . . . . . 6  |-  (DECID  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  -> DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 ) )
9567, 94syl 14 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )
96 dcn 837 . . . . . 6  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> DECID  -.  ( M  =  0  /\  N  =  0
) )
9771, 96syl 14 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  -.  ( M  =  0  /\  N  =  0 ) )
98 dcan2 929 . . . . 5  |-  (DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  ->  (DECID  -.  ( M  =  0  /\  N  =  0 )  -> DECID  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
9995, 97, 98sylc 62 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )
100 exmiddc 831 . . . 4  |-  (DECID  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  \/  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
10199, 100syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  \/  -.  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
10260, 93, 101mpjaod 713 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) )
10340, 14addcomd 8070 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  =  ( N  +  ( K  x.  M
) ) )
104103oveq2d 5869 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
105102, 104eqtrd 2203 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    <_ cle 7955   -ucneg 8091   NN0cn0 9135   ZZcz 9212    || cdvds 11749    gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  gcdadd  11940  gcdid  11941  modgcd  11946  gcdmultipled  11948  gcdmultiple  11975  pythagtriplem4  12222
  Copyright terms: Public domain W3C validator