Proof of Theorem orandc
Step | Hyp | Ref
| Expression |
1 | | pm4.56 770 |
. 2
⊢ ((¬
𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
2 | | dcn 832 |
. . . . 5
⊢
(DECID 𝜑 → DECID ¬ 𝜑) |
3 | 2 | adantr 274 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID ¬ 𝜑) |
4 | | dcn 832 |
. . . . 5
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
5 | 4 | adantl 275 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID ¬ 𝜓) |
6 | | dcan2 924 |
. . . 4
⊢
(DECID ¬ 𝜑 → (DECID ¬ 𝜓 → DECID
(¬ 𝜑 ∧ ¬ 𝜓))) |
7 | 3, 5, 6 | sylc 62 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ ¬ 𝜓)) |
8 | | dcor 925 |
. . . 4
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
9 | 8 | imp 123 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∨ 𝜓)) |
10 | | con2bidc 865 |
. . 3
⊢
(DECID (¬ 𝜑 ∧ ¬ 𝜓) → (DECID (𝜑 ∨ 𝜓) → (((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))))) |
11 | 7, 9, 10 | sylc 62 |
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)))) |
12 | 1, 11 | mpbii 147 |
1
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))) |