![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orandc | GIF version |
Description: Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.) |
Ref | Expression |
---|---|
orandc | ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.56 781 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
2 | dcn 843 | . . . 4 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
3 | dcn 843 | . . . 4 ⊢ (DECID 𝜓 → DECID ¬ 𝜓) | |
4 | dcan 935 | . . . 4 ⊢ ((DECID ¬ 𝜑 ∧ DECID ¬ 𝜓) → DECID (¬ 𝜑 ∧ ¬ 𝜓)) | |
5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ ¬ 𝜓)) |
6 | dcor 937 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∨ 𝜓))) | |
7 | 6 | imp 124 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∨ 𝜓)) |
8 | con2bidc 876 | . . 3 ⊢ (DECID (¬ 𝜑 ∧ ¬ 𝜓) → (DECID (𝜑 ∨ 𝜓) → (((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))))) | |
9 | 5, 7, 8 | sylc 62 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)))) |
10 | 1, 9 | mpbii 148 | 1 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
This theorem is referenced by: gcdaddm 12121 |
Copyright terms: Public domain | W3C validator |