ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.17dc Unicode version

Theorem pm5.17dc 904
Description: Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.)
Assertion
Ref Expression
pm5.17dc  |-  (DECID  ps  ->  ( ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) )  <-> 
( ph  <->  -.  ps )
) )

Proof of Theorem pm5.17dc
StepHypRef Expression
1 bicom 140 . 2  |-  ( (
ph 
<->  -.  ps )  <->  ( -.  ps 
<-> 
ph ) )
2 dfbi2 388 . . 3  |-  ( ( -.  ps  <->  ph )  <->  ( ( -.  ps  ->  ph )  /\  ( ph  ->  -.  ps )
) )
3 orcom 728 . . . . 5  |-  ( (
ph  \/  ps )  <->  ( ps  \/  ph )
)
4 dfordc 892 . . . . 5  |-  (DECID  ps  ->  ( ( ps  \/  ph ) 
<->  ( -.  ps  ->  ph ) ) )
53, 4bitr2id 193 . . . 4  |-  (DECID  ps  ->  ( ( -.  ps  ->  ph )  <->  ( ph  \/  ps ) ) )
6 imnan 690 . . . . 5  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
76a1i 9 . . . 4  |-  (DECID  ps  ->  ( ( ph  ->  -.  ps )  <->  -.  ( ph  /\ 
ps ) ) )
85, 7anbi12d 473 . . 3  |-  (DECID  ps  ->  ( ( ( -.  ps  ->  ph )  /\  ( ph  ->  -.  ps )
)  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps )
) ) )
92, 8bitrid 192 . 2  |-  (DECID  ps  ->  ( ( -.  ps  <->  ph )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) ) )
101, 9bitr2id 193 1  |-  (DECID  ps  ->  ( ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) )  <-> 
( ph  <->  -.  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  xor2dc  1390
  Copyright terms: Public domain W3C validator