ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.3 Unicode version

Theorem pm3.3 259
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ph  ->  ( ps 
->  ch ) ) )

Proof of Theorem pm3.3
StepHypRef Expression
1 id 19 . 2  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ( ph  /\  ps )  ->  ch )
)
21expd 256 1  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ph  ->  ( ps 
->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  impexp  261  pm3.37  684  pm4.79dc  898  sbi2v  1885
  Copyright terms: Public domain W3C validator