Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbi2v Unicode version

Theorem sbi2v 1869
 Description: Reverse direction of sbimv 1870. (Contributed by Jim Kingdon, 18-Jan-2018.)
Assertion
Ref Expression
sbi2v
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem sbi2v
StepHypRef Expression
1 19.38 1653 . . 3
2 pm3.3 259 . . . . 5
3 pm2.04 82 . . . . 5
42, 3syli 37 . . . 4
54alimi 1432 . . 3
61, 5syl 14 . 2
7 sb5 1864 . . 3
8 sb6 1863 . . 3
97, 8imbi12i 238 . 2
10 sb6 1863 . 2
116, 9, 103imtr4i 200 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103  wal 1330  wex 1469  wsb 1739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512 This theorem depends on definitions:  df-bi 116  df-sb 1740 This theorem is referenced by:  sbimv  1870
 Copyright terms: Public domain W3C validator