| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | Unicode version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 |
|
| Ref | Expression |
|---|---|
| impancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2195 disjiun 4029 euotd 4288 onsucelsucr 4545 isotr 5866 spc2ed 6300 nninfninc 7198 ltbtwnnqq 7499 genpcdl 7603 genpcuu 7604 un0addcl 9299 un0mulcl 9300 btwnnz 9437 uznfz 10195 elfz0ubfz0 10217 fzoss1 10264 elfzo0z 10277 fzofzim 10281 elfzom1p1elfzo 10307 ssfzo12bi 10318 subfzo0 10335 modfzo0difsn 10504 expaddzap 10692 caucvgre 11163 caubnd2 11299 summodc 11565 fzo0dvdseq 12039 nno 12088 lcmdvds 12272 hashgcdeq 12433 modprm0 12448 pcqcl 12500 issubg4m 13399 01eq0ring 13821 neii1 14467 neii2 14469 fsumcncntop 14887 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |