| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | Unicode version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 |
|
| Ref | Expression |
|---|---|
| impancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2204 disjiun 4040 euotd 4300 onsucelsucr 4557 isotr 5887 spc2ed 6321 nninfninc 7227 ltbtwnnqq 7530 genpcdl 7634 genpcuu 7635 un0addcl 9330 un0mulcl 9331 btwnnz 9469 uznfz 10227 elfz0ubfz0 10249 fzoss1 10297 elfzo0z 10310 fzofzim 10314 elfzom1p1elfzo 10345 ssfzo12bi 10356 subfzo0 10373 modfzo0difsn 10542 expaddzap 10730 caucvgre 11325 caubnd2 11461 summodc 11727 fzo0dvdseq 12201 nno 12250 lcmdvds 12434 hashgcdeq 12595 modprm0 12610 pcqcl 12662 issubg4m 13562 01eq0ring 13984 neii1 14652 neii2 14654 fsumcncntop 15072 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |