ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impancom Unicode version

Theorem impancom 258
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.)
Hypothesis
Ref Expression
impancom.1  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
Assertion
Ref Expression
impancom  |-  ( (
ph  /\  ch )  ->  ( ps  ->  th )
)

Proof of Theorem impancom
StepHypRef Expression
1 impancom.1 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
21ex 114 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 . 2  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
43imp 123 1  |-  ( (
ph  /\  ch )  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  eqrdav  2164  disjiun  3976  euotd  4231  onsucelsucr  4484  isotr  5783  spc2ed  6197  ltbtwnnqq  7352  genpcdl  7456  genpcuu  7457  un0addcl  9143  un0mulcl  9144  btwnnz  9281  uznfz  10034  elfz0ubfz0  10056  fzoss1  10102  elfzo0z  10115  fzofzim  10119  elfzom1p1elfzo  10145  ssfzo12bi  10156  subfzo0  10173  modfzo0difsn  10326  expaddzap  10495  caucvgre  10919  caubnd2  11055  summodc  11320  fzo0dvdseq  11791  nno  11839  lcmdvds  12007  hashgcdeq  12167  modprm0  12182  pcqcl  12234  neii1  12747  neii2  12749  fsumcncntop  13156
  Copyright terms: Public domain W3C validator