| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | Unicode version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 |
|
| Ref | Expression |
|---|---|
| impancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2204 disjiun 4039 euotd 4299 onsucelsucr 4556 isotr 5885 spc2ed 6319 nninfninc 7225 ltbtwnnqq 7528 genpcdl 7632 genpcuu 7633 un0addcl 9328 un0mulcl 9329 btwnnz 9467 uznfz 10225 elfz0ubfz0 10247 fzoss1 10295 elfzo0z 10308 fzofzim 10312 elfzom1p1elfzo 10343 ssfzo12bi 10354 subfzo0 10371 modfzo0difsn 10540 expaddzap 10728 caucvgre 11292 caubnd2 11428 summodc 11694 fzo0dvdseq 12168 nno 12217 lcmdvds 12401 hashgcdeq 12562 modprm0 12577 pcqcl 12629 issubg4m 13529 01eq0ring 13951 neii1 14619 neii2 14621 fsumcncntop 15039 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |