ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impancom Unicode version

Theorem impancom 260
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.)
Hypothesis
Ref Expression
impancom.1  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
Assertion
Ref Expression
impancom  |-  ( (
ph  /\  ch )  ->  ( ps  ->  th )
)

Proof of Theorem impancom
StepHypRef Expression
1 impancom.1 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
21ex 115 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 . 2  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
43imp 124 1  |-  ( (
ph  /\  ch )  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  eqrdav  2176  disjiun  3998  euotd  4254  onsucelsucr  4507  isotr  5816  spc2ed  6233  ltbtwnnqq  7413  genpcdl  7517  genpcuu  7518  un0addcl  9208  un0mulcl  9209  btwnnz  9346  uznfz  10102  elfz0ubfz0  10124  fzoss1  10170  elfzo0z  10183  fzofzim  10187  elfzom1p1elfzo  10213  ssfzo12bi  10224  subfzo0  10241  modfzo0difsn  10394  expaddzap  10563  caucvgre  10989  caubnd2  11125  summodc  11390  fzo0dvdseq  11862  nno  11910  lcmdvds  12078  hashgcdeq  12238  modprm0  12253  pcqcl  12305  issubg4m  13051  01eq0ring  13328  neii1  13617  neii2  13619  fsumcncntop  14026
  Copyright terms: Public domain W3C validator