| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi2i | Unicode version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi.a |
|
| Ref | Expression |
|---|---|
| bibi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | bibi.a |
. . 3
| |
| 3 | 1, 2 | bitrdi 196 |
. 2
|
| 4 | id 19 |
. . 3
| |
| 5 | 4, 2 | bitr4di 198 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 bibi12i 229 bibi2d 232 pm4.71r 390 sblbis 1989 sbrbif 1991 abeq2 2316 abid2f 2376 necon4biddc 2453 pm13.183 2918 disj3 3521 euabsn2 3712 a9evsep 4182 inex1 4194 zfpair2 4270 sucel 4475 bdinex1 16034 bj-zfpair2 16045 bj-d0clsepcl 16060 |
| Copyright terms: Public domain | W3C validator |