| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | Unicode version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 |
|
| Ref | Expression |
|---|---|
| pm4.71rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3259 rexss 3260 reuhypd 4519 elxp4 5171 elxp5 5172 dfco2a 5184 feu 5460 funbrfv2b 5625 dffn5im 5626 eqfnfv2 5680 dff4im 5728 fmptco 5748 dff13 5839 f1od2 6323 mpoxopovel 6329 brtposg 6342 dftpos3 6350 erinxp 6698 qliftfun 6706 pw2f1odclem 6933 genpdflem 7622 ltexprlemm 7715 prime 9474 oddnn02np1 12224 oddge22np1 12225 evennn02n 12226 evennn2n 12227 ismgmid 13242 eqger 13593 eqgid 13595 znleval 14448 bastop2 14589 restopn2 14688 restdis 14689 tx1cn 14774 tx2cn 14775 imasnopn 14804 xmeter 14941 lgsquadlem1 15587 lgsquadlem2 15588 lgsquadlem3 15589 |
| Copyright terms: Public domain | W3C validator |