| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | Unicode version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 |
|
| Ref | Expression |
|---|---|
| pm4.71rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3290 rexss 3291 reuhypd 4562 elxp4 5216 elxp5 5217 dfco2a 5229 feu 5508 funbrfv2b 5678 dffn5im 5679 eqfnfv2 5733 dff4im 5781 fmptco 5801 dff13 5892 f1od2 6381 mpoxopovel 6387 brtposg 6400 dftpos3 6408 erinxp 6756 qliftfun 6764 pw2f1odclem 6995 genpdflem 7694 ltexprlemm 7787 prime 9546 oddnn02np1 12391 oddge22np1 12392 evennn02n 12393 evennn2n 12394 ismgmid 13410 eqger 13761 eqgid 13763 znleval 14617 bastop2 14758 restopn2 14857 restdis 14858 tx1cn 14943 tx2cn 14944 imasnopn 14973 xmeter 15110 lgsquadlem1 15756 lgsquadlem2 15757 lgsquadlem3 15758 |
| Copyright terms: Public domain | W3C validator |