| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | Unicode version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 |
|
| Ref | Expression |
|---|---|
| pm4.71rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3250 rexss 3251 reuhypd 4507 elxp4 5158 elxp5 5159 dfco2a 5171 feu 5441 funbrfv2b 5606 dffn5im 5607 eqfnfv2 5661 dff4im 5709 fmptco 5729 dff13 5816 f1od2 6294 mpoxopovel 6300 brtposg 6313 dftpos3 6321 erinxp 6669 qliftfun 6677 pw2f1odclem 6896 genpdflem 7576 ltexprlemm 7669 prime 9427 oddnn02np1 12047 oddge22np1 12048 evennn02n 12049 evennn2n 12050 ismgmid 13030 eqger 13364 eqgid 13366 znleval 14219 bastop2 14330 restopn2 14429 restdis 14430 tx1cn 14515 tx2cn 14516 imasnopn 14545 xmeter 14682 lgsquadlem1 15328 lgsquadlem2 15329 lgsquadlem3 15330 |
| Copyright terms: Public domain | W3C validator |