| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | Unicode version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 |
|
| Ref | Expression |
|---|---|
| pm4.71rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3249 rexss 3250 reuhypd 4506 elxp4 5157 elxp5 5158 dfco2a 5170 feu 5440 funbrfv2b 5605 dffn5im 5606 eqfnfv2 5660 dff4im 5708 fmptco 5728 dff13 5815 f1od2 6293 mpoxopovel 6299 brtposg 6312 dftpos3 6320 erinxp 6668 qliftfun 6676 pw2f1odclem 6895 genpdflem 7574 ltexprlemm 7667 prime 9425 oddnn02np1 12045 oddge22np1 12046 evennn02n 12047 evennn2n 12048 ismgmid 13020 eqger 13354 eqgid 13356 znleval 14209 bastop2 14320 restopn2 14419 restdis 14420 tx1cn 14505 tx2cn 14506 imasnopn 14535 xmeter 14672 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 |
| Copyright terms: Public domain | W3C validator |