ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i Unicode version

Theorem pm4.71i 384
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
pm4.71i  |-  ( ph  <->  (
ph  /\  ps )
)

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2  |-  ( ph  ->  ps )
2 pm4.71 382 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
31, 2mpbi 144 1  |-  ( ph  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.24  388  anabs1  540  pm4.45  736  unidif0  4023  sucexb  4342  imadmrn  4817  dff1o2  5293  xpsnen  6617  dmaddpq  7035  dmmulpq  7036  eqreznegel  9198  xrnemnf  9347  xrnepnf  9348  elioopnf  9533  elioomnf  9534  elicopnf  9535  elxrge0  9544  isprm2  11526  bj-sucexg  12521
  Copyright terms: Public domain W3C validator