![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71i | Unicode version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm4.71i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm4.71 389 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 785 unidif0 4196 sucexb 4529 imadmrn 5015 dff1o2 5505 xpsnen 6875 dmaddpq 7439 dmmulpq 7440 eqreznegel 9679 xrnemnf 9843 xrnepnf 9844 elioopnf 10033 elioomnf 10034 elicopnf 10035 elxrge0 10044 dfrp2 10332 isprm2 12255 bj-sucexg 15414 |
Copyright terms: Public domain | W3C validator |