ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i Unicode version

Theorem pm4.71i 391
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
pm4.71i  |-  ( ph  <->  (
ph  /\  ps )
)

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2  |-  ( ph  ->  ps )
2 pm4.71 389 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
31, 2mpbi 145 1  |-  ( ph  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.24  395  anabs1  572  pm4.45  786  unidif0  4211  sucexb  4545  imadmrn  5032  dff1o2  5527  xpsnen  6916  dmaddpq  7492  dmmulpq  7493  eqreznegel  9735  xrnemnf  9899  xrnepnf  9900  elioopnf  10089  elioomnf  10090  elicopnf  10091  elxrge0  10100  dfrp2  10406  isprm2  12439  bj-sucexg  15858
  Copyright terms: Public domain W3C validator