ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i Unicode version

Theorem pm4.71i 391
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
pm4.71i  |-  ( ph  <->  (
ph  /\  ps )
)

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2  |-  ( ph  ->  ps )
2 pm4.71 389 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
31, 2mpbi 145 1  |-  ( ph  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.24  395  anabs1  572  pm4.45  784  unidif0  4162  sucexb  4490  imadmrn  4973  dff1o2  5458  xpsnen  6811  dmaddpq  7353  dmmulpq  7354  eqreznegel  9585  xrnemnf  9746  xrnepnf  9747  elioopnf  9936  elioomnf  9937  elicopnf  9938  elxrge0  9947  dfrp2  10232  isprm2  12082  bj-sucexg  14214
  Copyright terms: Public domain W3C validator