![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71i | Unicode version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm4.71i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm4.71 389 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 785 unidif0 4197 sucexb 4530 imadmrn 5016 dff1o2 5506 xpsnen 6877 dmaddpq 7441 dmmulpq 7442 eqreznegel 9682 xrnemnf 9846 xrnepnf 9847 elioopnf 10036 elioomnf 10037 elicopnf 10038 elxrge0 10047 dfrp2 10335 isprm2 12258 bj-sucexg 15484 |
Copyright terms: Public domain | W3C validator |