![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71i | Unicode version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm4.71i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm4.71 389 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 784 unidif0 4169 sucexb 4498 imadmrn 4982 dff1o2 5468 xpsnen 6824 dmaddpq 7381 dmmulpq 7382 eqreznegel 9617 xrnemnf 9780 xrnepnf 9781 elioopnf 9970 elioomnf 9971 elicopnf 9972 elxrge0 9981 dfrp2 10267 isprm2 12120 bj-sucexg 14814 |
Copyright terms: Public domain | W3C validator |