ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i Unicode version

Theorem pm4.71i 391
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
pm4.71i  |-  ( ph  <->  (
ph  /\  ps )
)

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2  |-  ( ph  ->  ps )
2 pm4.71 389 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
31, 2mpbi 145 1  |-  ( ph  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.24  395  anabs1  572  pm4.45  789  unidif0  4251  sucexb  4589  imadmrn  5078  dff1o2  5577  xpsnen  6980  dmaddpq  7566  dmmulpq  7567  eqreznegel  9809  xrnemnf  9973  xrnepnf  9974  elioopnf  10163  elioomnf  10164  elicopnf  10165  elxrge0  10174  dfrp2  10483  isprm2  12639  bj-sucexg  16285
  Copyright terms: Public domain W3C validator