ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.61 Unicode version

Theorem pm5.61 784
Description: Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.)
Assertion
Ref Expression
pm5.61  |-  ( ( ( ph  \/  ps )  /\  -.  ps )  <->  (
ph  /\  -.  ps )
)

Proof of Theorem pm5.61
StepHypRef Expression
1 biorf 734 . . 3  |-  ( -. 
ps  ->  ( ph  <->  ( ps  \/  ph ) ) )
2 orcom 718 . . 3  |-  ( ( ps  \/  ph )  <->  (
ph  \/  ps )
)
31, 2bitr2di 196 . 2  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  <->  ph ) )
43pm5.32ri 451 1  |-  ( ( ( ph  \/  ps )  /\  -.  ps )  <->  (
ph  /\  -.  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.75  952  excxor  1368  xrnemnf  9713  xrnepnf  9714
  Copyright terms: Public domain W3C validator