ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.61 GIF version

Theorem pm5.61 784
Description: Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.)
Assertion
Ref Expression
pm5.61 (((𝜑𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem pm5.61
StepHypRef Expression
1 biorf 734 . . 3 𝜓 → (𝜑 ↔ (𝜓𝜑)))
2 orcom 718 . . 3 ((𝜓𝜑) ↔ (𝜑𝜓))
31, 2bitr2di 196 . 2 𝜓 → ((𝜑𝜓) ↔ 𝜑))
43pm5.32ri 451 1 (((𝜑𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.75  952  excxor  1368  xrnemnf  9713  xrnepnf  9714
  Copyright terms: Public domain W3C validator