Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.61 | GIF version |
Description: Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.) |
Ref | Expression |
---|---|
pm5.61 | ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorf 739 | . . 3 ⊢ (¬ 𝜓 → (𝜑 ↔ (𝜓 ∨ 𝜑))) | |
2 | orcom 723 | . . 3 ⊢ ((𝜓 ∨ 𝜑) ↔ (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | bitr2di 196 | . 2 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) ↔ 𝜑)) |
4 | 3 | pm5.32ri 452 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.75 957 excxor 1373 xrnemnf 9734 xrnepnf 9735 |
Copyright terms: Public domain | W3C validator |