ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnemnf Unicode version

Theorem xrnemnf 9713
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnemnf  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )

Proof of Theorem xrnemnf
StepHypRef Expression
1 pm5.61 784 . 2  |-  ( ( ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo )  /\  -.  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  /\  -.  A  = -oo ) )
2 elxr 9712 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3 df-3or 969 . . . 4  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo ) )
42, 3bitri 183 . . 3  |-  ( A  e.  RR*  <->  ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo ) )
5 df-ne 2337 . . 3  |-  ( A  =/= -oo  <->  -.  A  = -oo )
64, 5anbi12i 456 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( (
( A  e.  RR  \/  A  = +oo )  \/  A  = -oo )  /\  -.  A  = -oo ) )
7 renemnf 7947 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
8 pnfnemnf 7953 . . . . . 6  |- +oo  =/= -oo
9 neeq1 2349 . . . . . 6  |-  ( A  = +oo  ->  ( A  =/= -oo  <-> +oo  =/= -oo )
)
108, 9mpbiri 167 . . . . 5  |-  ( A  = +oo  ->  A  =/= -oo )
117, 10jaoi 706 . . . 4  |-  ( ( A  e.  RR  \/  A  = +oo )  ->  A  =/= -oo )
1211neneqd 2357 . . 3  |-  ( ( A  e.  RR  \/  A  = +oo )  ->  -.  A  = -oo )
1312pm4.71i 389 . 2  |-  ( ( A  e.  RR  \/  A  = +oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  /\  -.  A  = -oo ) )
141, 6, 133bitr4i 211 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698    \/ w3o 967    = wceq 1343    e. wcel 2136    =/= wne 2336   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-mnf 7936  df-xr 7937
This theorem is referenced by:  xaddf  9780  xaddval  9781  xaddnemnf  9793  xaddass  9805  xlesubadd  9819  xblss2ps  13044  xblss2  13045
  Copyright terms: Public domain W3C validator