ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnemnf Unicode version

Theorem xrnemnf 9973
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnemnf  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )

Proof of Theorem xrnemnf
StepHypRef Expression
1 pm5.61 799 . 2  |-  ( ( ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo )  /\  -.  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  /\  -.  A  = -oo ) )
2 elxr 9972 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3 df-3or 1003 . . . 4  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo ) )
42, 3bitri 184 . . 3  |-  ( A  e.  RR*  <->  ( ( A  e.  RR  \/  A  = +oo )  \/  A  = -oo ) )
5 df-ne 2401 . . 3  |-  ( A  =/= -oo  <->  -.  A  = -oo )
64, 5anbi12i 460 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( (
( A  e.  RR  \/  A  = +oo )  \/  A  = -oo )  /\  -.  A  = -oo ) )
7 renemnf 8195 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
8 pnfnemnf 8201 . . . . . 6  |- +oo  =/= -oo
9 neeq1 2413 . . . . . 6  |-  ( A  = +oo  ->  ( A  =/= -oo  <-> +oo  =/= -oo )
)
108, 9mpbiri 168 . . . . 5  |-  ( A  = +oo  ->  A  =/= -oo )
117, 10jaoi 721 . . . 4  |-  ( ( A  e.  RR  \/  A  = +oo )  ->  A  =/= -oo )
1211neneqd 2421 . . 3  |-  ( ( A  e.  RR  \/  A  = +oo )  ->  -.  A  = -oo )
1312pm4.71i 391 . 2  |-  ( ( A  e.  RR  \/  A  = +oo )  <->  ( ( A  e.  RR  \/  A  = +oo )  /\  -.  A  = -oo ) )
141, 6, 133bitr4i 212 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200    =/= wne 2400   RRcr 7998   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-pnf 8183  df-mnf 8184  df-xr 8185
This theorem is referenced by:  xaddf  10040  xaddval  10041  xaddnemnf  10053  xaddass  10065  xlesubadd  10079  xblss2ps  15078  xblss2  15079
  Copyright terms: Public domain W3C validator