| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > excxor | Unicode version | ||
| Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) (Proof rewritten by Jim Kingdon, 5-May-2018.) |
| Ref | Expression |
|---|---|
| excxor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xoranor 1388 |
. . 3
| |
| 2 | andi 819 |
. . 3
| |
| 3 | orcom 729 |
. . . . 5
| |
| 4 | pm3.24 694 |
. . . . . 6
| |
| 5 | 4 | biorfi 747 |
. . . . 5
|
| 6 | andir 820 |
. . . . 5
| |
| 7 | 3, 5, 6 | 3bitr4ri 213 |
. . . 4
|
| 8 | pm5.61 795 |
. . . 4
| |
| 9 | 7, 8 | orbi12i 765 |
. . 3
|
| 10 | 1, 2, 9 | 3bitri 206 |
. 2
|
| 11 | orcom 729 |
. 2
| |
| 12 | ancom 266 |
. . 3
| |
| 13 | 12 | orbi2i 763 |
. 2
|
| 14 | 10, 11, 13 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: xordc 1403 symdifxor 3429 |
| Copyright terms: Public domain | W3C validator |