Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | |
bitr2di.2 |
Ref | Expression |
---|---|
bitr2di |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 | |
2 | bitr2di.2 | . . 3 | |
3 | 1, 2 | bitrdi 195 | . 2 |
4 | 3 | bicomd 140 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bitr4id 198 bibif 688 pm5.61 784 oranabs 805 pm5.7dc 939 nbbndc 1376 resopab2 4914 xpcom 5133 f1od2 6183 map1 6758 ac6sfi 6844 elznn0 9183 rexuz3 10894 xrmaxiflemcom 11150 metrest 12948 sincosq3sgn 13191 sincosq4sgn 13192 |
Copyright terms: Public domain | W3C validator |