ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2di Unicode version

Theorem bitr2di 197
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2di.1  |-  ( ph  ->  ( ps  <->  ch )
)
bitr2di.2  |-  ( ch  <->  th )
Assertion
Ref Expression
bitr2di  |-  ( ph  ->  ( th  <->  ps )
)

Proof of Theorem bitr2di
StepHypRef Expression
1 bitr2di.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 bitr2di.2 . . 3  |-  ( ch  <->  th )
31, 2bitrdi 196 . 2  |-  ( ph  ->  ( ps  <->  th )
)
43bicomd 141 1  |-  ( ph  ->  ( th  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr4id  199  bibif  699  pm5.61  795  oranabs  816  pm5.7dc  956  nbbndc  1413  resopab2  5005  xpcom  5228  f1od2  6320  map1  6903  ac6sfi  6994  elznn0  9386  rexuz3  11243  xrmaxiflemcom  11502  metrest  14920  sincosq3sgn  15242  sincosq4sgn  15243  lgsquadlem3  15498
  Copyright terms: Public domain W3C validator