| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 |
|
| bitr2di.2 |
|
| Ref | Expression |
|---|---|
| bitr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 |
. . 3
| |
| 2 | bitr2di.2 |
. . 3
| |
| 3 | 1, 2 | bitrdi 196 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr4id 199 bibif 703 pm5.61 799 oranabs 820 pm5.7dc 960 nbbndc 1436 resopab2 5051 xpcom 5274 f1od2 6379 map1 6963 ac6sfi 7056 elznn0 9457 rexuz3 11496 xrmaxiflemcom 11755 metrest 15174 sincosq3sgn 15496 sincosq4sgn 15497 lgsquadlem3 15752 pw1map 16320 |
| Copyright terms: Public domain | W3C validator |