| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 |
|
| bitr2di.2 |
|
| Ref | Expression |
|---|---|
| bitr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 |
. . 3
| |
| 2 | bitr2di.2 |
. . 3
| |
| 3 | 1, 2 | bitrdi 196 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr4id 199 bibif 700 pm5.61 796 oranabs 817 pm5.7dc 957 nbbndc 1414 resopab2 5025 xpcom 5248 f1od2 6344 map1 6928 ac6sfi 7021 elznn0 9422 rexuz3 11416 xrmaxiflemcom 11675 metrest 15093 sincosq3sgn 15415 sincosq4sgn 15416 lgsquadlem3 15671 pw1map 16134 |
| Copyright terms: Public domain | W3C validator |