| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 |
|
| bitr2di.2 |
|
| Ref | Expression |
|---|---|
| bitr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 |
. . 3
| |
| 2 | bitr2di.2 |
. . 3
| |
| 3 | 1, 2 | bitrdi 196 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr4id 199 bibif 699 pm5.61 795 oranabs 816 pm5.7dc 956 nbbndc 1405 resopab2 4994 xpcom 5217 f1od2 6302 map1 6880 ac6sfi 6968 elznn0 9358 rexuz3 11172 xrmaxiflemcom 11431 metrest 14826 sincosq3sgn 15148 sincosq4sgn 15149 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |