| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 |
|
| bitr2di.2 |
|
| Ref | Expression |
|---|---|
| bitr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 |
. . 3
| |
| 2 | bitr2di.2 |
. . 3
| |
| 3 | 1, 2 | bitrdi 196 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr4id 199 bibif 699 pm5.61 795 oranabs 816 pm5.7dc 956 nbbndc 1413 resopab2 5003 xpcom 5226 f1od2 6311 map1 6889 ac6sfi 6977 elznn0 9369 rexuz3 11220 xrmaxiflemcom 11479 metrest 14896 sincosq3sgn 15218 sincosq4sgn 15219 lgsquadlem3 15474 |
| Copyright terms: Public domain | W3C validator |