| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 |
|
| bitr2di.2 |
|
| Ref | Expression |
|---|---|
| bitr2di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 |
. . 3
| |
| 2 | bitr2di.2 |
. . 3
| |
| 3 | 1, 2 | bitrdi 196 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr4id 199 bibif 699 pm5.61 795 oranabs 816 pm5.7dc 956 nbbndc 1413 resopab2 5005 xpcom 5228 f1od2 6320 map1 6903 ac6sfi 6994 elznn0 9386 rexuz3 11243 xrmaxiflemcom 11502 metrest 14920 sincosq3sgn 15242 sincosq4sgn 15243 lgsquadlem3 15498 |
| Copyright terms: Public domain | W3C validator |