| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bitr2di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| bitr2di.1 | 
 | 
| bitr2di.2 | 
 | 
| Ref | Expression | 
|---|---|
| bitr2di | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitr2di.1 | 
. . 3
 | |
| 2 | bitr2di.2 | 
. . 3
 | |
| 3 | 1, 2 | bitrdi 196 | 
. 2
 | 
| 4 | 3 | bicomd 141 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bitr4id 199 bibif 699 pm5.61 795 oranabs 816 pm5.7dc 956 nbbndc 1405 resopab2 4993 xpcom 5216 f1od2 6293 map1 6871 ac6sfi 6959 elznn0 9341 rexuz3 11155 xrmaxiflemcom 11414 metrest 14742 sincosq3sgn 15064 sincosq4sgn 15065 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |