ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2di Unicode version

Theorem bitr2di 197
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2di.1  |-  ( ph  ->  ( ps  <->  ch )
)
bitr2di.2  |-  ( ch  <->  th )
Assertion
Ref Expression
bitr2di  |-  ( ph  ->  ( th  <->  ps )
)

Proof of Theorem bitr2di
StepHypRef Expression
1 bitr2di.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 bitr2di.2 . . 3  |-  ( ch  <->  th )
31, 2bitrdi 196 . 2  |-  ( ph  ->  ( ps  <->  th )
)
43bicomd 141 1  |-  ( ph  ->  ( th  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr4id  199  bibif  699  pm5.61  795  oranabs  816  pm5.7dc  956  nbbndc  1405  resopab2  4993  xpcom  5216  f1od2  6293  map1  6871  ac6sfi  6959  elznn0  9341  rexuz3  11155  xrmaxiflemcom  11414  metrest  14742  sincosq3sgn  15064  sincosq4sgn  15065  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator