ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd Unicode version

Theorem adantrd 279
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
adantrd  |-  ( ph  ->  ( ( ps  /\  th )  ->  ch )
)

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( ps  /\  th )  ->  ps )
2 adantrd.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 1  |-  ( ph  ->  ( ( ps  /\  th )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem is referenced by:  syldan  282  jaoa  721  prlem1  975  equveli  1773  elssabg  4182  suctr  4457  fvun1  5630  opabbrex  5970  poxp  6299  tposfo2  6334  1idprl  7674  1idpru  7675  uzind  9454  xrlttr  9887  fzen  10135  fz0fzelfz0  10219  fisumss  11574  fprodssdc  11772  zeqzmulgcd  12162  lcmgcdlem  12270  lcmdvds  12272  cncongr2  12297  exprmfct  12331  pceu  12489  infpnlem1  12553  isghm  13449  ringadd2  13659  metrest  14826  bj-charfunbi  15541  bj-om  15667
  Copyright terms: Public domain W3C validator