ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd Unicode version

Theorem adantrd 275
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
adantrd  |-  ( ph  ->  ( ( ps  /\  th )  ->  ch )
)

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 108 . 2  |-  ( ( ps  /\  th )  ->  ps )
2 adantrd.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 1  |-  ( ph  ->  ( ( ps  /\  th )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105
This theorem is referenced by:  syldan  278  jaoa  692  prlem1  940  equveli  1715  elssabg  4033  suctr  4303  fvun1  5441  opabbrex  5769  poxp  6083  tposfo2  6118  1idprl  7346  1idpru  7347  uzind  9066  xrlttr  9474  fzen  9716  fz0fzelfz0  9797  fisumss  11053  zeqzmulgcd  11507  lcmgcdlem  11604  lcmdvds  11606  cncongr2  11631  exprmfct  11664  metrest  12495  bj-om  12827
  Copyright terms: Public domain W3C validator