| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | Unicode version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 |
|
| Ref | Expression |
|---|---|
| adantrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | adantrd.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 722 prlem1 976 equveli 1783 elssabg 4208 suctr 4486 fvun1 5668 opabbrex 6012 poxp 6341 tposfo2 6376 1idprl 7738 1idpru 7739 uzind 9519 xrlttr 9952 fzen 10200 fz0fzelfz0 10284 ccatsymb 11096 fisumss 11818 fprodssdc 12016 zeqzmulgcd 12406 lcmgcdlem 12514 lcmdvds 12516 cncongr2 12541 exprmfct 12575 pceu 12733 infpnlem1 12797 isghm 13694 ringadd2 13904 metrest 15093 umgredg 15849 bj-charfunbi 15946 bj-om 16072 |
| Copyright terms: Public domain | W3C validator |