| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | Unicode version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 |
|
| Ref | Expression |
|---|---|
| adantrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | adantrd.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 722 prlem1 976 equveli 1782 elssabg 4192 suctr 4468 fvun1 5645 opabbrex 5989 poxp 6318 tposfo2 6353 1idprl 7703 1idpru 7704 uzind 9484 xrlttr 9917 fzen 10165 fz0fzelfz0 10249 ccatsymb 11058 fisumss 11703 fprodssdc 11901 zeqzmulgcd 12291 lcmgcdlem 12399 lcmdvds 12401 cncongr2 12426 exprmfct 12460 pceu 12618 infpnlem1 12682 isghm 13579 ringadd2 13789 metrest 14978 bj-charfunbi 15747 bj-om 15873 |
| Copyright terms: Public domain | W3C validator |