| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | Unicode version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 |
|
| Ref | Expression |
|---|---|
| adantrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | adantrd.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 725 prlem1 979 equveli 1805 elssabg 4232 suctr 4512 fvun1 5700 opabbrex 6048 poxp 6378 tposfo2 6413 1idprl 7777 1idpru 7778 uzind 9558 xrlttr 9991 fzen 10239 fz0fzelfz0 10323 ccatsymb 11137 fisumss 11903 fprodssdc 12101 zeqzmulgcd 12491 lcmgcdlem 12599 lcmdvds 12601 cncongr2 12626 exprmfct 12660 pceu 12818 infpnlem1 12882 isghm 13780 ringadd2 13990 metrest 15180 umgredg 15943 bj-charfunbi 16174 bj-om 16300 |
| Copyright terms: Public domain | W3C validator |