| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | Unicode version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 |
|
| Ref | Expression |
|---|---|
| adantrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | adantrd.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 722 prlem1 976 equveli 1782 elssabg 4193 suctr 4469 fvun1 5647 opabbrex 5991 poxp 6320 tposfo2 6355 1idprl 7705 1idpru 7706 uzind 9486 xrlttr 9919 fzen 10167 fz0fzelfz0 10251 ccatsymb 11061 fisumss 11736 fprodssdc 11934 zeqzmulgcd 12324 lcmgcdlem 12432 lcmdvds 12434 cncongr2 12459 exprmfct 12493 pceu 12651 infpnlem1 12715 isghm 13612 ringadd2 13822 metrest 15011 bj-charfunbi 15784 bj-om 15910 |
| Copyright terms: Public domain | W3C validator |