ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jaao Unicode version

Theorem jaao 674
Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.)
Hypotheses
Ref Expression
jaao.1  |-  ( ph  ->  ( ps  ->  ch ) )
jaao.2  |-  ( th 
->  ( ta  ->  ch ) )
Assertion
Ref Expression
jaao  |-  ( (
ph  /\  th )  ->  ( ( ps  \/  ta )  ->  ch )
)

Proof of Theorem jaao
StepHypRef Expression
1 jaao.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21adantr 270 . 2  |-  ( (
ph  /\  th )  ->  ( ps  ->  ch ) )
3 jaao.2 . . 3  |-  ( th 
->  ( ta  ->  ch ) )
43adantl 271 . 2  |-  ( (
ph  /\  th )  ->  ( ta  ->  ch ) )
52, 4jaod 672 1  |-  ( (
ph  /\  th )  ->  ( ( ps  \/  ta )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm3.48  734  prlem1  919  nford  1504  funun  5044  poxp  5979  nntri3or  6236
  Copyright terms: Public domain W3C validator