ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23 Unicode version

Theorem r19.23 2574
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
r19.23.1  |-  F/ x ps
Assertion
Ref Expression
r19.23  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )

Proof of Theorem r19.23
StepHypRef Expression
1 r19.23.1 . 2  |-  F/ x ps
2 r19.23t 2573 . 2  |-  ( F/ x ps  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph 
->  ps ) ) )
31, 2ax-mp 5 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  r19.23v  2575  rexlimi  2576  rexlimd  2580
  Copyright terms: Public domain W3C validator