ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23v Unicode version

Theorem r19.23v 2481
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.23v  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.23v
StepHypRef Expression
1 nfv 1466 . 2  |-  F/ x ps
21r19.23 2480 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wral 2359   E.wrex 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-ral 2364  df-rex 2365
This theorem is referenced by:  uniiunlem  3109  dfiin2g  3763  iunss  3771  ralxfr2d  4286  rexxfr2d  4287  ssrel2  4528  reliun  4558  funimaexglem  5097  funimass4  5355  ralrnmpt2  5759
  Copyright terms: Public domain W3C validator