ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23v Unicode version

Theorem r19.23v 2575
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.23v  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.23v
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ps
21r19.23 2574 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  uniiunlem  3231  dfiin2g  3899  iunss  3907  ralxfr2d  4442  rexxfr2d  4443  ssrel2  4694  reliun  4725  funimaexglem  5271  funimass4  5537  ralrnmpo  5956
  Copyright terms: Public domain W3C validator