ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimi Unicode version

Theorem rexlimi 2597
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimi.1  |-  F/ x ps
rexlimi.2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
rexlimi  |-  ( E. x  e.  A  ph  ->  ps )

Proof of Theorem rexlimi
StepHypRef Expression
1 rexlimi.2 . . 3  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
21rgen 2540 . 2  |-  A. x  e.  A  ( ph  ->  ps )
3 rexlimi.1 . . 3  |-  F/ x ps
43r19.23 2595 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
52, 4mpbi 145 1  |-  ( E. x  e.  A  ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1470    e. wcel 2158   A.wral 2465   E.wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-ral 2470  df-rex 2471
This theorem is referenced by:  rexlimiv  2598  r19.29af2  2627  triun  4126  reusv1  4470  reusv3  4472  onintrab2im  4529  fun11iun  5494  fisumcom2  11460  fprodcom2fi  11648
  Copyright terms: Public domain W3C validator