ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimi Unicode version

Theorem rexlimi 2564
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimi.1  |-  F/ x ps
rexlimi.2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
rexlimi  |-  ( E. x  e.  A  ph  ->  ps )

Proof of Theorem rexlimi
StepHypRef Expression
1 rexlimi.2 . . 3  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
21rgen 2507 . 2  |-  A. x  e.  A  ( ph  ->  ps )
3 rexlimi.1 . . 3  |-  F/ x ps
43r19.23 2562 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps ) )
52, 4mpbi 144 1  |-  ( E. x  e.  A  ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1437    e. wcel 2125   A.wral 2432   E.wrex 2433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-ial 1511  ax-i5r 1512
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-ral 2437  df-rex 2438
This theorem is referenced by:  rexlimiv  2565  r19.29af2  2594  triun  4071  reusv1  4412  reusv3  4414  onintrab2im  4471  fun11iun  5428  fisumcom2  11312  fprodcom2fi  11500
  Copyright terms: Public domain W3C validator