ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23t Unicode version

Theorem r19.23t 2604
Description: Closed theorem form of r19.23 2605. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
r19.23t  |-  ( F/ x ps  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph 
->  ps ) ) )

Proof of Theorem r19.23t
StepHypRef Expression
1 19.23t 1691 . 2  |-  ( F/ x ps  ->  ( A. x ( ( x  e.  A  /\  ph )  ->  ps )  <->  ( E. x ( x  e.  A  /\  ph )  ->  ps ) ) )
2 df-ral 2480 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
3 impexp 263 . . . 4  |-  ( ( ( x  e.  A  /\  ph )  ->  ps ) 
<->  ( x  e.  A  ->  ( ph  ->  ps ) ) )
43albii 1484 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
52, 4bitr4i 187 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ps ) )
6 df-rex 2481 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
76imbi1i 238 . 2  |-  ( ( E. x  e.  A  ph 
->  ps )  <->  ( E. x ( x  e.  A  /\  ph )  ->  ps ) )
81, 5, 73bitr4g 223 1  |-  ( F/ x ps  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph 
->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   F/wnf 1474   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  r19.23  2605  rexlimd2  2612
  Copyright terms: Public domain W3C validator