ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimd Unicode version

Theorem rexlimd 2604
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimd.1  |-  F/ x ph
rexlimd.2  |-  F/ x ch
rexlimd.3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimd  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )

Proof of Theorem rexlimd
StepHypRef Expression
1 rexlimd.1 . . 3  |-  F/ x ph
2 rexlimd.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
31, 2ralrimi 2561 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
4 rexlimd.2 . . 3  |-  F/ x ch
54r19.23 2598 . 2  |-  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) )
63, 5sylib 122 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1471    e. wcel 2160   A.wral 2468   E.wrex 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2473  df-rex 2474
This theorem is referenced by:  rexlimdv  2606  ralxfrALT  4485  fvmptt  5628  ffnfv  5695  nneneq  6885  ac6sfi  6926  prarloclem3step  7525  prmuloc2  7596  caucvgprprlemaddq  7737  axpre-suploclemres  7930  lbzbi  9646  divalglemeunn  11958  divalglemeuneg  11960  oddpwdclemdvds  12202  oddpwdclemndvds  12203  trirec0  15251
  Copyright terms: Public domain W3C validator