ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimd Unicode version

Theorem rexlimd 2620
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimd.1  |-  F/ x ph
rexlimd.2  |-  F/ x ch
rexlimd.3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimd  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )

Proof of Theorem rexlimd
StepHypRef Expression
1 rexlimd.1 . . 3  |-  F/ x ph
2 rexlimd.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
31, 2ralrimi 2577 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
4 rexlimd.2 . . 3  |-  F/ x ch
54r19.23 2614 . 2  |-  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) )
63, 5sylib 122 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1483    e. wcel 2176   A.wral 2484   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489  df-rex 2490
This theorem is referenced by:  rexlimdv  2622  ralxfrALT  4514  fvmptt  5671  ffnfv  5738  nneneq  6954  ac6sfi  6995  prarloclem3step  7609  prmuloc2  7680  caucvgprprlemaddq  7821  axpre-suploclemres  8014  lbzbi  9737  divalglemeunn  12232  divalglemeuneg  12234  oddpwdclemdvds  12492  oddpwdclemndvds  12493  trirec0  15983
  Copyright terms: Public domain W3C validator