| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimd | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimd.1 |
|
| rexlimd.2 |
|
| rexlimd.3 |
|
| Ref | Expression |
|---|---|
| rexlimd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd.1 |
. . 3
| |
| 2 | rexlimd.3 |
. . 3
| |
| 3 | 1, 2 | ralrimi 2576 |
. 2
|
| 4 | rexlimd.2 |
. . 3
| |
| 5 | 4 | r19.23 2613 |
. 2
|
| 6 | 3, 5 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: rexlimdv 2621 ralxfrALT 4513 fvmptt 5670 ffnfv 5737 nneneq 6953 ac6sfi 6994 prarloclem3step 7608 prmuloc2 7679 caucvgprprlemaddq 7820 axpre-suploclemres 8013 lbzbi 9736 divalglemeunn 12203 divalglemeuneg 12205 oddpwdclemdvds 12463 oddpwdclemndvds 12464 trirec0 15945 |
| Copyright terms: Public domain | W3C validator |