![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimd | Unicode version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimd.1 |
![]() ![]() ![]() ![]() |
rexlimd.2 |
![]() ![]() ![]() ![]() |
rexlimd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexlimd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | rexlimd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ralrimi 2561 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | rexlimd.2 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 4 | r19.23 2598 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | sylib 122 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2473 df-rex 2474 |
This theorem is referenced by: rexlimdv 2606 ralxfrALT 4485 fvmptt 5628 ffnfv 5695 nneneq 6885 ac6sfi 6926 prarloclem3step 7525 prmuloc2 7596 caucvgprprlemaddq 7737 axpre-suploclemres 7930 lbzbi 9646 divalglemeunn 11958 divalglemeuneg 11960 oddpwdclemdvds 12202 oddpwdclemndvds 12203 trirec0 15251 |
Copyright terms: Public domain | W3C validator |