| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimd | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimd.1 |
|
| rexlimd.2 |
|
| rexlimd.3 |
|
| Ref | Expression |
|---|---|
| rexlimd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd.1 |
. . 3
| |
| 2 | rexlimd.3 |
. . 3
| |
| 3 | 1, 2 | ralrimi 2568 |
. 2
|
| 4 | rexlimd.2 |
. . 3
| |
| 5 | 4 | r19.23 2605 |
. 2
|
| 6 | 3, 5 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: rexlimdv 2613 ralxfrALT 4502 fvmptt 5653 ffnfv 5720 nneneq 6918 ac6sfi 6959 prarloclem3step 7563 prmuloc2 7634 caucvgprprlemaddq 7775 axpre-suploclemres 7968 lbzbi 9690 divalglemeunn 12086 divalglemeuneg 12088 oddpwdclemdvds 12338 oddpwdclemndvds 12339 trirec0 15688 |
| Copyright terms: Public domain | W3C validator |