![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimd | Unicode version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimd.1 |
![]() ![]() ![]() ![]() |
rexlimd.2 |
![]() ![]() ![]() ![]() |
rexlimd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexlimd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | rexlimd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ralrimi 2445 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | rexlimd.2 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 4 | r19.23 2481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | sylib 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-ial 1473 ax-i5r 1474 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-ral 2365 df-rex 2366 |
This theorem is referenced by: rexlimdv 2489 ralxfrALT 4302 fvmptt 5407 ffnfv 5470 nneneq 6627 ac6sfi 6668 prarloclem3step 7109 prmuloc2 7180 caucvgprprlemaddq 7321 lbzbi 9155 divalglemeunn 11253 divalglemeuneg 11255 oddpwdclemdvds 11480 oddpwdclemndvds 11481 |
Copyright terms: Public domain | W3C validator |