![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reubii | Unicode version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reubii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | reubiia 2554 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-eu 1952 df-reu 2367 |
This theorem is referenced by: caucvgsrlemcl 7397 axcaucvglemcl 7493 axcaucvglemval 7495 |
Copyright terms: Public domain | W3C validator |