ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubii Unicode version

Theorem reubii 2675
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
Hypothesis
Ref Expression
reubii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
reubii  |-  ( E! x  e.  A  ph  <->  E! x  e.  A  ps )

Proof of Theorem reubii
StepHypRef Expression
1 reubii.1 . . 3  |-  ( ph  <->  ps )
21a1i 9 . 2  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
32reubiia 2674 1  |-  ( E! x  e.  A  ph  <->  E! x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2159   E!wreu 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-eu 2040  df-reu 2474
This theorem is referenced by:  caucvgsrlemcl  7805  axcaucvglemcl  7911  axcaucvglemval  7913
  Copyright terms: Public domain W3C validator