![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reubii | Unicode version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reubii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | reubiia 2674 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-eu 2040 df-reu 2474 |
This theorem is referenced by: caucvgsrlemcl 7805 axcaucvglemcl 7911 axcaucvglemval 7913 |
Copyright terms: Public domain | W3C validator |