ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemval Unicode version

Theorem axcaucvglemval 7959
Description: Lemma for axcaucvg 7962. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemval  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
Distinct variable groups:    j, F, z   
z, G    j, J, l, u, z    ph, j    y, l, u    x, y
Allowed substitution hints:    ph( x, y, z, u, k, n, r, l)    F( x, y, u, k, n, r, l)    G( x, y, u, j, k, n, r, l)    J( x, y, k, n, r)    N( x, y, z, u, j, k, n, r, l)

Proof of Theorem axcaucvglemval
StepHypRef Expression
1 axcaucvg.g . . . . 5  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
21a1i 9 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
) )
3 opeq1 3805 . . . . . . . . . . . . . . . 16  |-  ( j  =  J  ->  <. j ,  1o >.  =  <. J ,  1o >. )
43eceq1d 6625 . . . . . . . . . . . . . . 15  |-  ( j  =  J  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
54breq2d 4042 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  (
l  <Q  [ <. j ,  1o >. ]  ~Q  <->  l  <Q  [
<. J ,  1o >. ]  ~Q  ) )
65abbidv 2311 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  }
)
74breq1d 4040 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  ( [ <. j ,  1o >. ]  ~Q  <Q  u  <->  [
<. J ,  1o >. ]  ~Q  <Q  u )
)
87abbidv 2311 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } )
96, 8opeq12d 3813 . . . . . . . . . . . 12  |-  ( j  =  J  ->  <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >. )
109oveq1d 5934 . . . . . . . . . . 11  |-  ( j  =  J  ->  ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
1110opeq1d 3811 . . . . . . . . . 10  |-  ( j  =  J  ->  <. ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
1211eceq1d 6625 . . . . . . . . 9  |-  ( j  =  J  ->  [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1312opeq1d 3811 . . . . . . . 8  |-  ( j  =  J  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1413fveq2d 5559 . . . . . . 7  |-  ( j  =  J  ->  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
1514eqeq1d 2202 . . . . . 6  |-  ( j  =  J  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1615riotabidv 5876 . . . . 5  |-  ( j  =  J  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1716adantl 277 . . . 4  |-  ( ( ( ph  /\  J  e.  N. )  /\  j  =  J )  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
18 simpr 110 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  J  e. 
N. )
19 axcaucvg.n . . . . 5  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 axcaucvg.f . . . . 5  |-  ( ph  ->  F : N --> RR )
2119, 20axcaucvglemcl 7957 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e.  R. )
222, 17, 18, 21fvmptd 5639 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  =  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
2322eqcomd 2199 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) )
2422, 21eqeltrd 2270 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  e. 
R. )
2520adantr 276 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  F : N
--> RR )
26 pitonn 7910 . . . . . . . 8  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
2726, 19eleqtrrdi 2287 . . . . . . 7  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
2827adantl 277 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
2925, 28ffvelcdmd 5695 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR )
30 elrealeu 7891 . . . . 5  |-  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR  <->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
3129, 30sylib 122 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
32 eqcom 2195 . . . . 5  |-  ( <.
z ,  0R >.  =  ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
3332reubii 2680 . . . 4  |-  ( E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  E! z  e.  R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
3431, 33sylib 122 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
35 opeq1 3805 . . . . 5  |-  ( z  =  ( G `  J )  ->  <. z ,  0R >.  =  <. ( G `  J ) ,  0R >. )
3635eqeq2d 2205 . . . 4  |-  ( z  =  ( G `  J )  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
)
3736riota2 5897 . . 3  |-  ( ( ( G `  J
)  e.  R.  /\  E! z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  ->  ( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >.  <->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) ) )
3824, 34, 37syl2anc 411 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >.  <->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) ) )
3923, 38mpbird 167 1  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E!wreu 2474   <.cop 3622   |^|cint 3871   class class class wbr 4030    |-> cmpt 4091   -->wf 5251   ` cfv 5255   iota_crio 5873  (class class class)co 5919   1oc1o 6464   [cec 6587   N.cnpi 7334    ~Q ceq 7341    <Q cltq 7347   1Pc1p 7354    +P. cpp 7355    ~R cer 7358   R.cnr 7359   0Rc0r 7360   RRcr 7873   1c1 7875    + caddc 7877    <RR cltrr 7878    x. cmul 7879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790  df-0r 7793  df-1r 7794  df-c 7880  df-1 7882  df-r 7884  df-add 7885
This theorem is referenced by:  axcaucvglemcau  7960  axcaucvglemres  7961
  Copyright terms: Public domain W3C validator