ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemval Unicode version

Theorem axcaucvglemval 8080
Description: Lemma for axcaucvg 8083. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemval  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
Distinct variable groups:    j, F, z   
z, G    j, J, l, u, z    ph, j    y, l, u    x, y
Allowed substitution hints:    ph( x, y, z, u, k, n, r, l)    F( x, y, u, k, n, r, l)    G( x, y, u, j, k, n, r, l)    J( x, y, k, n, r)    N( x, y, z, u, j, k, n, r, l)

Proof of Theorem axcaucvglemval
StepHypRef Expression
1 axcaucvg.g . . . . 5  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
21a1i 9 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
) )
3 opeq1 3856 . . . . . . . . . . . . . . . 16  |-  ( j  =  J  ->  <. j ,  1o >.  =  <. J ,  1o >. )
43eceq1d 6714 . . . . . . . . . . . . . . 15  |-  ( j  =  J  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
54breq2d 4094 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  (
l  <Q  [ <. j ,  1o >. ]  ~Q  <->  l  <Q  [
<. J ,  1o >. ]  ~Q  ) )
65abbidv 2347 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  }
)
74breq1d 4092 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  ( [ <. j ,  1o >. ]  ~Q  <Q  u  <->  [
<. J ,  1o >. ]  ~Q  <Q  u )
)
87abbidv 2347 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } )
96, 8opeq12d 3864 . . . . . . . . . . . 12  |-  ( j  =  J  ->  <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >. )
109oveq1d 6015 . . . . . . . . . . 11  |-  ( j  =  J  ->  ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
1110opeq1d 3862 . . . . . . . . . 10  |-  ( j  =  J  ->  <. ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
1211eceq1d 6714 . . . . . . . . 9  |-  ( j  =  J  ->  [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1312opeq1d 3862 . . . . . . . 8  |-  ( j  =  J  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1413fveq2d 5630 . . . . . . 7  |-  ( j  =  J  ->  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
1514eqeq1d 2238 . . . . . 6  |-  ( j  =  J  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1615riotabidv 5955 . . . . 5  |-  ( j  =  J  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1716adantl 277 . . . 4  |-  ( ( ( ph  /\  J  e.  N. )  /\  j  =  J )  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
18 simpr 110 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  J  e. 
N. )
19 axcaucvg.n . . . . 5  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 axcaucvg.f . . . . 5  |-  ( ph  ->  F : N --> RR )
2119, 20axcaucvglemcl 8078 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e.  R. )
222, 17, 18, 21fvmptd 5714 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  =  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
2322eqcomd 2235 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) )
2422, 21eqeltrd 2306 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  e. 
R. )
2520adantr 276 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  F : N
--> RR )
26 pitonn 8031 . . . . . . . 8  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
2726, 19eleqtrrdi 2323 . . . . . . 7  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
2827adantl 277 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
2925, 28ffvelcdmd 5770 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR )
30 elrealeu 8012 . . . . 5  |-  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR  <->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
3129, 30sylib 122 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
32 eqcom 2231 . . . . 5  |-  ( <.
z ,  0R >.  =  ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
3332reubii 2718 . . . 4  |-  ( E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  E! z  e.  R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
3431, 33sylib 122 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
35 opeq1 3856 . . . . 5  |-  ( z  =  ( G `  J )  ->  <. z ,  0R >.  =  <. ( G `  J ) ,  0R >. )
3635eqeq2d 2241 . . . 4  |-  ( z  =  ( G `  J )  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
)
3736riota2 5977 . . 3  |-  ( ( ( G `  J
)  e.  R.  /\  E! z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  ->  ( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >.  <->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) ) )
3824, 34, 37syl2anc 411 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >.  <->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) ) )
3923, 38mpbird 167 1  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E!wreu 2510   <.cop 3669   |^|cint 3922   class class class wbr 4082    |-> cmpt 4144   -->wf 5313   ` cfv 5317   iota_crio 5952  (class class class)co 6000   1oc1o 6553   [cec 6676   N.cnpi 7455    ~Q ceq 7462    <Q cltq 7468   1Pc1p 7475    +P. cpp 7476    ~R cer 7479   R.cnr 7480   0Rc0r 7481   RRcr 7994   1c1 7996    + caddc 7998    <RR cltrr 7999    x. cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-enr 7909  df-nr 7910  df-plr 7911  df-0r 7914  df-1r 7915  df-c 8001  df-1 8003  df-r 8005  df-add 8006
This theorem is referenced by:  axcaucvglemcau  8081  axcaucvglemres  8082
  Copyright terms: Public domain W3C validator