Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axcaucvglemval | Unicode version |
Description: Lemma for axcaucvg 7803. Value of sequence when mapping to and . (Contributed by Jim Kingdon, 10-Jul-2021.) |
Ref | Expression |
---|---|
axcaucvg.n | |
axcaucvg.f | |
axcaucvg.cau | |
axcaucvg.g |
Ref | Expression |
---|---|
axcaucvglemval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axcaucvg.g | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | opeq1 3741 | . . . . . . . . . . . . . . . 16 | |
4 | 3 | eceq1d 6509 | . . . . . . . . . . . . . . 15 |
5 | 4 | breq2d 3977 | . . . . . . . . . . . . . 14 |
6 | 5 | abbidv 2275 | . . . . . . . . . . . . 13 |
7 | 4 | breq1d 3975 | . . . . . . . . . . . . . 14 |
8 | 7 | abbidv 2275 | . . . . . . . . . . . . 13 |
9 | 6, 8 | opeq12d 3749 | . . . . . . . . . . . 12 |
10 | 9 | oveq1d 5833 | . . . . . . . . . . 11 |
11 | 10 | opeq1d 3747 | . . . . . . . . . 10 |
12 | 11 | eceq1d 6509 | . . . . . . . . 9 |
13 | 12 | opeq1d 3747 | . . . . . . . 8 |
14 | 13 | fveq2d 5469 | . . . . . . 7 |
15 | 14 | eqeq1d 2166 | . . . . . 6 |
16 | 15 | riotabidv 5776 | . . . . 5 |
17 | 16 | adantl 275 | . . . 4 |
18 | simpr 109 | . . . 4 | |
19 | axcaucvg.n | . . . . 5 | |
20 | axcaucvg.f | . . . . 5 | |
21 | 19, 20 | axcaucvglemcl 7798 | . . . 4 |
22 | 2, 17, 18, 21 | fvmptd 5546 | . . 3 |
23 | 22 | eqcomd 2163 | . 2 |
24 | 22, 21 | eqeltrd 2234 | . . 3 |
25 | 20 | adantr 274 | . . . . . 6 |
26 | pitonn 7751 | . . . . . . . 8 | |
27 | 26, 19 | eleqtrrdi 2251 | . . . . . . 7 |
28 | 27 | adantl 275 | . . . . . 6 |
29 | 25, 28 | ffvelrnd 5600 | . . . . 5 |
30 | elrealeu 7732 | . . . . 5 | |
31 | 29, 30 | sylib 121 | . . . 4 |
32 | eqcom 2159 | . . . . 5 | |
33 | 32 | reubii 2642 | . . . 4 |
34 | 31, 33 | sylib 121 | . . 3 |
35 | opeq1 3741 | . . . . 5 | |
36 | 35 | eqeq2d 2169 | . . . 4 |
37 | 36 | riota2 5796 | . . 3 |
38 | 24, 34, 37 | syl2anc 409 | . 2 |
39 | 23, 38 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cab 2143 wral 2435 wreu 2437 cop 3563 cint 3807 class class class wbr 3965 cmpt 4025 wf 5163 cfv 5167 crio 5773 (class class class)co 5818 c1o 6350 cec 6471 cnpi 7175 ceq 7182 cltq 7188 c1p 7195 cpp 7196 cer 7199 cnr 7200 c0r 7201 cr 7714 c1 7716 caddc 7718 cltrr 7719 cmul 7720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-i1p 7370 df-iplp 7371 df-enr 7629 df-nr 7630 df-plr 7631 df-0r 7634 df-1r 7635 df-c 7721 df-1 7723 df-r 7725 df-add 7726 |
This theorem is referenced by: axcaucvglemcau 7801 axcaucvglemres 7802 |
Copyright terms: Public domain | W3C validator |