| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcaucvglemval | Unicode version | ||
| Description: Lemma for axcaucvg 8012. Value of sequence when mapping to |
| Ref | Expression |
|---|---|
| axcaucvg.n |
|
| axcaucvg.f |
|
| axcaucvg.cau |
|
| axcaucvg.g |
|
| Ref | Expression |
|---|---|
| axcaucvglemval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcaucvg.g |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | opeq1 3818 |
. . . . . . . . . . . . . . . 16
| |
| 4 | 3 | eceq1d 6655 |
. . . . . . . . . . . . . . 15
|
| 5 | 4 | breq2d 4055 |
. . . . . . . . . . . . . 14
|
| 6 | 5 | abbidv 2322 |
. . . . . . . . . . . . 13
|
| 7 | 4 | breq1d 4053 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | abbidv 2322 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | opeq12d 3826 |
. . . . . . . . . . . 12
|
| 10 | 9 | oveq1d 5958 |
. . . . . . . . . . 11
|
| 11 | 10 | opeq1d 3824 |
. . . . . . . . . 10
|
| 12 | 11 | eceq1d 6655 |
. . . . . . . . 9
|
| 13 | 12 | opeq1d 3824 |
. . . . . . . 8
|
| 14 | 13 | fveq2d 5579 |
. . . . . . 7
|
| 15 | 14 | eqeq1d 2213 |
. . . . . 6
|
| 16 | 15 | riotabidv 5900 |
. . . . 5
|
| 17 | 16 | adantl 277 |
. . . 4
|
| 18 | simpr 110 |
. . . 4
| |
| 19 | axcaucvg.n |
. . . . 5
| |
| 20 | axcaucvg.f |
. . . . 5
| |
| 21 | 19, 20 | axcaucvglemcl 8007 |
. . . 4
|
| 22 | 2, 17, 18, 21 | fvmptd 5659 |
. . 3
|
| 23 | 22 | eqcomd 2210 |
. 2
|
| 24 | 22, 21 | eqeltrd 2281 |
. . 3
|
| 25 | 20 | adantr 276 |
. . . . . 6
|
| 26 | pitonn 7960 |
. . . . . . . 8
| |
| 27 | 26, 19 | eleqtrrdi 2298 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 25, 28 | ffvelcdmd 5715 |
. . . . 5
|
| 30 | elrealeu 7941 |
. . . . 5
| |
| 31 | 29, 30 | sylib 122 |
. . . 4
|
| 32 | eqcom 2206 |
. . . . 5
| |
| 33 | 32 | reubii 2691 |
. . . 4
|
| 34 | 31, 33 | sylib 122 |
. . 3
|
| 35 | opeq1 3818 |
. . . . 5
| |
| 36 | 35 | eqeq2d 2216 |
. . . 4
|
| 37 | 36 | riota2 5921 |
. . 3
|
| 38 | 24, 34, 37 | syl2anc 411 |
. 2
|
| 39 | 23, 38 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-i1p 7579 df-iplp 7580 df-enr 7838 df-nr 7839 df-plr 7840 df-0r 7843 df-1r 7844 df-c 7930 df-1 7932 df-r 7934 df-add 7935 |
| This theorem is referenced by: axcaucvglemcau 8010 axcaucvglemres 8011 |
| Copyright terms: Public domain | W3C validator |