| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reubii | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| reubii.1 | ⊢ (𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reubii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | 
| 3 | 2 | reubiia 2682 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∈ wcel 2167 ∃!wreu 2477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-eu 2048 df-reu 2482 | 
| This theorem is referenced by: caucvgsrlemcl 7856 axcaucvglemcl 7962 axcaucvglemval 7964 | 
| Copyright terms: Public domain | W3C validator |