![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reubii | GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 2551 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∈ wcel 1438 ∃!wreu 2361 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-eu 1951 df-reu 2366 |
This theorem is referenced by: caucvgsrlemcl 7332 axcaucvglemcl 7428 axcaucvglemval 7430 |
Copyright terms: Public domain | W3C validator |