ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubii GIF version

Theorem reubii 2691
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
Hypothesis
Ref Expression
reubii.1 (𝜑𝜓)
Assertion
Ref Expression
reubii (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)

Proof of Theorem reubii
StepHypRef Expression
1 reubii.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32reubiia 2690 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2175  ∃!wreu 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-eu 2056  df-reu 2490
This theorem is referenced by:  caucvgsrlemcl  7884  axcaucvglemcl  7990  axcaucvglemval  7992
  Copyright terms: Public domain W3C validator