ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcl Unicode version

Theorem caucvgsrlemcl 7856
Description: Lemma for caucvgsr 7869. Terms of the sequence from caucvgsrlemgt1 7862 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
Hypotheses
Ref Expression
caucvgsrlemcl.f  |-  ( ph  ->  F : N. --> R. )
caucvgsrlemcl.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemcl  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Distinct variable groups:    A, m    y, A    m, F    y, F
Allowed substitution hints:    ph( y, m)

Proof of Theorem caucvgsrlemcl
StepHypRef Expression
1 caucvgsrlemcl.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelcdmda 5697 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
3 0lt1sr 7832 . . . . 5  |-  0R  <R  1R
4 caucvgsrlemcl.gt1 . . . . . 6  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
5 fveq2 5558 . . . . . . . 8  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
65breq2d 4045 . . . . . . 7  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
76rspcv 2864 . . . . . 6  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
84, 7mpan9 281 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
9 ltsosr 7831 . . . . . 6  |-  <R  Or  R.
10 ltrelsr 7805 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
119, 10sotri 5065 . . . . 5  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
123, 8, 11sylancr 414 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
13 srpospr 7850 . . . 4  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
142, 12, 13syl2anc 411 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
15 eqcom 2198 . . . 4  |-  ( [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1615reubii 2683 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1714, 16sylib 122 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
18 riotacl 5892 . 2  |-  ( E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  ->  ( iota_ y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
1917, 18syl 14 1  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E!wreu 2477   <.cop 3625   class class class wbr 4033   -->wf 5254   ` cfv 5258   iota_crio 5876  (class class class)co 5922   [cec 6590   N.cnpi 7339   P.cnp 7358   1Pc1p 7359    +P. cpp 7360    ~R cer 7363   R.cnr 7364   0Rc0r 7365   1Rc1r 7366    <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-iltp 7537  df-enr 7793  df-nr 7794  df-ltr 7797  df-0r 7798  df-1r 7799
This theorem is referenced by:  caucvgsrlemfv  7858  caucvgsrlemf  7859
  Copyright terms: Public domain W3C validator