ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcl Unicode version

Theorem caucvgsrlemcl 7621
Description: Lemma for caucvgsr 7634. Terms of the sequence from caucvgsrlemgt1 7627 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
Hypotheses
Ref Expression
caucvgsrlemcl.f  |-  ( ph  ->  F : N. --> R. )
caucvgsrlemcl.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemcl  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Distinct variable groups:    A, m    y, A    m, F    y, F
Allowed substitution hints:    ph( y, m)

Proof of Theorem caucvgsrlemcl
StepHypRef Expression
1 caucvgsrlemcl.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelrnda 5563 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
3 0lt1sr 7597 . . . . 5  |-  0R  <R  1R
4 caucvgsrlemcl.gt1 . . . . . 6  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
5 fveq2 5429 . . . . . . . 8  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
65breq2d 3949 . . . . . . 7  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
76rspcv 2789 . . . . . 6  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
84, 7mpan9 279 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
9 ltsosr 7596 . . . . . 6  |-  <R  Or  R.
10 ltrelsr 7570 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
119, 10sotri 4942 . . . . 5  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
123, 8, 11sylancr 411 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
13 srpospr 7615 . . . 4  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
142, 12, 13syl2anc 409 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
15 eqcom 2142 . . . 4  |-  ( [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1615reubii 2619 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1714, 16sylib 121 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
18 riotacl 5752 . 2  |-  ( E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  ->  ( iota_ y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
1917, 18syl 14 1  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   E!wreu 2419   <.cop 3535   class class class wbr 3937   -->wf 5127   ` cfv 5131   iota_crio 5737  (class class class)co 5782   [cec 6435   N.cnpi 7104   P.cnp 7123   1Pc1p 7124    +P. cpp 7125    ~R cer 7128   R.cnr 7129   0Rc0r 7130   1Rc1r 7131    <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562  df-0r 7563  df-1r 7564
This theorem is referenced by:  caucvgsrlemfv  7623  caucvgsrlemf  7624
  Copyright terms: Public domain W3C validator