ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcl Unicode version

Theorem caucvgsrlemcl 7937
Description: Lemma for caucvgsr 7950. Terms of the sequence from caucvgsrlemgt1 7943 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
Hypotheses
Ref Expression
caucvgsrlemcl.f  |-  ( ph  ->  F : N. --> R. )
caucvgsrlemcl.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemcl  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Distinct variable groups:    A, m    y, A    m, F    y, F
Allowed substitution hints:    ph( y, m)

Proof of Theorem caucvgsrlemcl
StepHypRef Expression
1 caucvgsrlemcl.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelcdmda 5738 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
3 0lt1sr 7913 . . . . 5  |-  0R  <R  1R
4 caucvgsrlemcl.gt1 . . . . . 6  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
5 fveq2 5599 . . . . . . . 8  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
65breq2d 4071 . . . . . . 7  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
76rspcv 2880 . . . . . 6  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
84, 7mpan9 281 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
9 ltsosr 7912 . . . . . 6  |-  <R  Or  R.
10 ltrelsr 7886 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
119, 10sotri 5097 . . . . 5  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
123, 8, 11sylancr 414 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
13 srpospr 7931 . . . 4  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
142, 12, 13syl2anc 411 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
15 eqcom 2209 . . . 4  |-  ( [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1615reubii 2695 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1714, 16sylib 122 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
18 riotacl 5937 . 2  |-  ( E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  ->  ( iota_ y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
1917, 18syl 14 1  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E!wreu 2488   <.cop 3646   class class class wbr 4059   -->wf 5286   ` cfv 5290   iota_crio 5921  (class class class)co 5967   [cec 6641   N.cnpi 7420   P.cnp 7439   1Pc1p 7440    +P. cpp 7441    ~R cer 7444   R.cnr 7445   0Rc0r 7446   1Rc1r 7447    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-iltp 7618  df-enr 7874  df-nr 7875  df-ltr 7878  df-0r 7879  df-1r 7880
This theorem is referenced by:  caucvgsrlemfv  7939  caucvgsrlemf  7940
  Copyright terms: Public domain W3C validator