ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcl Unicode version

Theorem caucvgsrlemcl 7851
Description: Lemma for caucvgsr 7864. Terms of the sequence from caucvgsrlemgt1 7857 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
Hypotheses
Ref Expression
caucvgsrlemcl.f  |-  ( ph  ->  F : N. --> R. )
caucvgsrlemcl.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemcl  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Distinct variable groups:    A, m    y, A    m, F    y, F
Allowed substitution hints:    ph( y, m)

Proof of Theorem caucvgsrlemcl
StepHypRef Expression
1 caucvgsrlemcl.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelcdmda 5694 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
3 0lt1sr 7827 . . . . 5  |-  0R  <R  1R
4 caucvgsrlemcl.gt1 . . . . . 6  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
5 fveq2 5555 . . . . . . . 8  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
65breq2d 4042 . . . . . . 7  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
76rspcv 2861 . . . . . 6  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
84, 7mpan9 281 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
9 ltsosr 7826 . . . . . 6  |-  <R  Or  R.
10 ltrelsr 7800 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
119, 10sotri 5062 . . . . 5  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
123, 8, 11sylancr 414 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
13 srpospr 7845 . . . 4  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
142, 12, 13syl2anc 411 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
15 eqcom 2195 . . . 4  |-  ( [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1615reubii 2680 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1714, 16sylib 122 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
18 riotacl 5889 . 2  |-  ( E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  ->  ( iota_ y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
1917, 18syl 14 1  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E!wreu 2474   <.cop 3622   class class class wbr 4030   -->wf 5251   ` cfv 5255   iota_crio 5873  (class class class)co 5919   [cec 6587   N.cnpi 7334   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    ~R cer 7358   R.cnr 7359   0Rc0r 7360   1Rc1r 7361    <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-ltr 7792  df-0r 7793  df-1r 7794
This theorem is referenced by:  caucvgsrlemfv  7853  caucvgsrlemf  7854
  Copyright terms: Public domain W3C validator