ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcl Unicode version

Theorem caucvgsrlemcl 7334
Description: Lemma for caucvgsr 7347. Terms of the sequence from caucvgsrlemgt1 7340 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
Hypotheses
Ref Expression
caucvgsrlemcl.f  |-  ( ph  ->  F : N. --> R. )
caucvgsrlemcl.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemcl  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Distinct variable groups:    A, m    y, A    m, F    y, F
Allowed substitution hints:    ph( y, m)

Proof of Theorem caucvgsrlemcl
StepHypRef Expression
1 caucvgsrlemcl.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelrnda 5434 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
3 0lt1sr 7311 . . . . 5  |-  0R  <R  1R
4 caucvgsrlemcl.gt1 . . . . . 6  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
5 fveq2 5305 . . . . . . . 8  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
65breq2d 3857 . . . . . . 7  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
76rspcv 2718 . . . . . 6  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
84, 7mpan9 275 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
9 ltsosr 7310 . . . . . 6  |-  <R  Or  R.
10 ltrelsr 7284 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
119, 10sotri 4827 . . . . 5  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
123, 8, 11sylancr 405 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
13 srpospr 7328 . . . 4  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
142, 12, 13syl2anc 403 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
15 eqcom 2090 . . . 4  |-  ( [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1615reubii 2552 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A )  <->  E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )
1714, 16sylib 120 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  E! y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
18 riotacl 5622 . 2  |-  ( E! y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  ->  ( iota_ y  e.  P.  ( F `  A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
1917, 18syl 14 1  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359   E!wreu 2361   <.cop 3449   class class class wbr 3845   -->wf 5011   ` cfv 5015   iota_crio 5607  (class class class)co 5652   [cec 6290   N.cnpi 6831   P.cnp 6850   1Pc1p 6851    +P. cpp 6852    ~R cer 6855   R.cnr 6856   0Rc0r 6857   1Rc1r 6858    <R cltr 6862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6292  df-ec 6294  df-qs 6298  df-ni 6863  df-pli 6864  df-mi 6865  df-lti 6866  df-plpq 6903  df-mpq 6904  df-enq 6906  df-nqqs 6907  df-plqqs 6908  df-mqqs 6909  df-1nqqs 6910  df-rq 6911  df-ltnqqs 6912  df-enq0 6983  df-nq0 6984  df-0nq0 6985  df-plq0 6986  df-mq0 6987  df-inp 7025  df-i1p 7026  df-iplp 7027  df-iltp 7029  df-enr 7272  df-nr 7273  df-ltr 7276  df-0r 7277  df-1r 7278
This theorem is referenced by:  caucvgsrlemfv  7336  caucvgsrlemf  7337
  Copyright terms: Public domain W3C validator