ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdvai Unicode version

Theorem reximdvai 2507
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
Hypothesis
Ref Expression
reximdvai.1  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
reximdvai  |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem reximdvai
StepHypRef Expression
1 nfv 1491 . 2  |-  F/ x ph
2 reximdvai.1 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
31, 2reximdai 2505 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   E.wrex 2392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-17 1489  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-ral 2396  df-rex 2397
This theorem is referenced by:  reximdv  2508  reximdva  2509  reuind  2860
  Copyright terms: Public domain W3C validator