ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdv Unicode version

Theorem reximdv 2578
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.)
Hypothesis
Ref Expression
reximdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
reximdv  |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem reximdv
StepHypRef Expression
1 reximdv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21a1d 22 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
32reximdvai 2577 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  r19.12  2583  reusv3  4462  rexxfrd  4465  iunpw  4482  fvelima  5569  carden2bex  7190  prnmaddl  7491  prarloclem5  7501  prarloc2  7505  genprndl  7522  genprndu  7523  ltpopr  7596  recexprlemm  7625  recexprlemopl  7626  recexprlemopu  7628  recexprlem1ssl  7634  recexprlem1ssu  7635  cauappcvgprlemupu  7650  caucvgprlemupu  7673  caucvgprprlemupu  7701  caucvgsrlemoffres  7801  map2psrprg  7806  resqrexlemgt0  11031  subcn2  11321  bezoutlembz  12007  pythagtriplem19  12284  tgcl  13649  neiss  13735  ssnei2  13742  tgcnp  13794  cnptopco  13807  cnptopresti  13823  lmtopcnp  13835  blssexps  14014  blssex  14015  mopni3  14069  neibl  14076  metss  14079  metcnp3  14096  rescncf  14153  limcresi  14220
  Copyright terms: Public domain W3C validator