Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
Ref | Expression |
---|---|
reximdv.1 |
Ref | Expression |
---|---|
reximdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv.1 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | 2 | reximdvai 2570 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: r19.12 2576 reusv3 4443 rexxfrd 4446 iunpw 4463 fvelima 5546 carden2bex 7153 prnmaddl 7439 prarloclem5 7449 prarloc2 7453 genprndl 7470 genprndu 7471 ltpopr 7544 recexprlemm 7573 recexprlemopl 7574 recexprlemopu 7576 recexprlem1ssl 7582 recexprlem1ssu 7583 cauappcvgprlemupu 7598 caucvgprlemupu 7621 caucvgprprlemupu 7649 caucvgsrlemoffres 7749 map2psrprg 7754 resqrexlemgt0 10971 subcn2 11261 bezoutlembz 11946 pythagtriplem19 12223 tgcl 12817 neiss 12903 ssnei2 12910 tgcnp 12962 cnptopco 12975 cnptopresti 12991 lmtopcnp 13003 blssexps 13182 blssex 13183 mopni3 13237 neibl 13244 metss 13247 metcnp3 13264 rescncf 13321 limcresi 13388 |
Copyright terms: Public domain | W3C validator |