| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 |
|
| Ref | Expression |
|---|---|
| reximdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | 2 | reximdvai 2606 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: r19.12 2612 reusv3 4508 rexxfrd 4511 iunpw 4528 fvelima 5632 carden2bex 7299 prnmaddl 7605 prarloclem5 7615 prarloc2 7619 genprndl 7636 genprndu 7637 ltpopr 7710 recexprlemm 7739 recexprlemopl 7740 recexprlemopu 7742 recexprlem1ssl 7748 recexprlem1ssu 7749 cauappcvgprlemupu 7764 caucvgprlemupu 7787 caucvgprprlemupu 7815 caucvgsrlemoffres 7915 map2psrprg 7920 resqrexlemgt0 11364 subcn2 11655 bezoutlembz 12358 pythagtriplem19 12638 mplsubgfileminv 14495 tgcl 14569 neiss 14655 ssnei2 14662 tgcnp 14714 cnptopco 14727 cnptopresti 14743 lmtopcnp 14755 blssexps 14934 blssex 14935 mopni3 14989 neibl 14996 metss 14999 metcnp3 15016 mpomulcn 15071 rescncf 15086 limcresi 15171 plyss 15243 |
| Copyright terms: Public domain | W3C validator |