| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 |
|
| Ref | Expression |
|---|---|
| reximdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | 2 | reximdvai 2630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: r19.12 2637 reusv3 4551 rexxfrd 4554 iunpw 4571 fvelima 5685 carden2bex 7362 prnmaddl 7677 prarloclem5 7687 prarloc2 7691 genprndl 7708 genprndu 7709 ltpopr 7782 recexprlemm 7811 recexprlemopl 7812 recexprlemopu 7814 recexprlem1ssl 7820 recexprlem1ssu 7821 cauappcvgprlemupu 7836 caucvgprlemupu 7859 caucvgprprlemupu 7887 caucvgsrlemoffres 7987 map2psrprg 7992 resqrexlemgt0 11531 subcn2 11822 bezoutlembz 12525 pythagtriplem19 12805 mplsubgfileminv 14664 tgcl 14738 neiss 14824 ssnei2 14831 tgcnp 14883 cnptopco 14896 cnptopresti 14912 lmtopcnp 14924 blssexps 15103 blssex 15104 mopni3 15158 neibl 15165 metss 15168 metcnp3 15185 mpomulcn 15240 rescncf 15255 limcresi 15340 plyss 15412 umgrnloop0 15917 uhgr2edg 16004 |
| Copyright terms: Public domain | W3C validator |