| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 |
|
| Ref | Expression |
|---|---|
| reximdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | 2 | reximdvai 2608 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: r19.12 2614 reusv3 4525 rexxfrd 4528 iunpw 4545 fvelima 5653 carden2bex 7323 prnmaddl 7638 prarloclem5 7648 prarloc2 7652 genprndl 7669 genprndu 7670 ltpopr 7743 recexprlemm 7772 recexprlemopl 7773 recexprlemopu 7775 recexprlem1ssl 7781 recexprlem1ssu 7782 cauappcvgprlemupu 7797 caucvgprlemupu 7820 caucvgprprlemupu 7848 caucvgsrlemoffres 7948 map2psrprg 7953 resqrexlemgt0 11446 subcn2 11737 bezoutlembz 12440 pythagtriplem19 12720 mplsubgfileminv 14577 tgcl 14651 neiss 14737 ssnei2 14744 tgcnp 14796 cnptopco 14809 cnptopresti 14825 lmtopcnp 14837 blssexps 15016 blssex 15017 mopni3 15071 neibl 15078 metss 15081 metcnp3 15098 mpomulcn 15153 rescncf 15168 limcresi 15253 plyss 15325 |
| Copyright terms: Public domain | W3C validator |