| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 |
|
| Ref | Expression |
|---|---|
| reximdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | 2 | reximdvai 2597 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.12 2603 reusv3 4496 rexxfrd 4499 iunpw 4516 fvelima 5615 carden2bex 7268 prnmaddl 7574 prarloclem5 7584 prarloc2 7588 genprndl 7605 genprndu 7606 ltpopr 7679 recexprlemm 7708 recexprlemopl 7709 recexprlemopu 7711 recexprlem1ssl 7717 recexprlem1ssu 7718 cauappcvgprlemupu 7733 caucvgprlemupu 7756 caucvgprprlemupu 7784 caucvgsrlemoffres 7884 map2psrprg 7889 resqrexlemgt0 11202 subcn2 11493 bezoutlembz 12196 pythagtriplem19 12476 tgcl 14384 neiss 14470 ssnei2 14477 tgcnp 14529 cnptopco 14542 cnptopresti 14558 lmtopcnp 14570 blssexps 14749 blssex 14750 mopni3 14804 neibl 14811 metss 14814 metcnp3 14831 mpomulcn 14886 rescncf 14901 limcresi 14986 plyss 15058 |
| Copyright terms: Public domain | W3C validator |