| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| reximdv.1 | 
 | 
| Ref | Expression | 
|---|---|
| reximdv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reximdv.1 | 
. . 3
 | |
| 2 | 1 | a1d 22 | 
. 2
 | 
| 3 | 2 | reximdvai 2597 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: r19.12 2603 reusv3 4495 rexxfrd 4498 iunpw 4515 fvelima 5612 carden2bex 7256 prnmaddl 7557 prarloclem5 7567 prarloc2 7571 genprndl 7588 genprndu 7589 ltpopr 7662 recexprlemm 7691 recexprlemopl 7692 recexprlemopu 7694 recexprlem1ssl 7700 recexprlem1ssu 7701 cauappcvgprlemupu 7716 caucvgprlemupu 7739 caucvgprprlemupu 7767 caucvgsrlemoffres 7867 map2psrprg 7872 resqrexlemgt0 11185 subcn2 11476 bezoutlembz 12171 pythagtriplem19 12451 tgcl 14300 neiss 14386 ssnei2 14393 tgcnp 14445 cnptopco 14458 cnptopresti 14474 lmtopcnp 14486 blssexps 14665 blssex 14666 mopni3 14720 neibl 14727 metss 14730 metcnp3 14747 mpomulcn 14802 rescncf 14817 limcresi 14902 plyss 14974 | 
| Copyright terms: Public domain | W3C validator |