| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 |
|
| Ref | Expression |
|---|---|
| reximdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | 2 | reximdvai 2606 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: r19.12 2612 reusv3 4507 rexxfrd 4510 iunpw 4527 fvelima 5630 carden2bex 7297 prnmaddl 7603 prarloclem5 7613 prarloc2 7617 genprndl 7634 genprndu 7635 ltpopr 7708 recexprlemm 7737 recexprlemopl 7738 recexprlemopu 7740 recexprlem1ssl 7746 recexprlem1ssu 7747 cauappcvgprlemupu 7762 caucvgprlemupu 7785 caucvgprprlemupu 7813 caucvgsrlemoffres 7913 map2psrprg 7918 resqrexlemgt0 11331 subcn2 11622 bezoutlembz 12325 pythagtriplem19 12605 mplsubgfileminv 14462 tgcl 14536 neiss 14622 ssnei2 14629 tgcnp 14681 cnptopco 14694 cnptopresti 14710 lmtopcnp 14722 blssexps 14901 blssex 14902 mopni3 14956 neibl 14963 metss 14966 metcnp3 14983 mpomulcn 15038 rescncf 15053 limcresi 15138 plyss 15210 |
| Copyright terms: Public domain | W3C validator |