Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuind | Unicode version |
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
Ref | Expression |
---|---|
reuind.1 | |
reuind.2 |
Ref | Expression |
---|---|
reuind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuind.2 | . . . . . . . 8 | |
2 | 1 | eleq1d 2235 | . . . . . . 7 |
3 | reuind.1 | . . . . . . 7 | |
4 | 2, 3 | anbi12d 465 | . . . . . 6 |
5 | 4 | cbvexv 1906 | . . . . 5 |
6 | r19.41v 2622 | . . . . . . 7 | |
7 | 6 | exbii 1593 | . . . . . 6 |
8 | rexcom4 2749 | . . . . . 6 | |
9 | risset 2494 | . . . . . . . 8 | |
10 | 9 | anbi1i 454 | . . . . . . 7 |
11 | 10 | exbii 1593 | . . . . . 6 |
12 | 7, 8, 11 | 3bitr4ri 212 | . . . . 5 |
13 | 5, 12 | bitri 183 | . . . 4 |
14 | eqeq2 2175 | . . . . . . . . . 10 | |
15 | 14 | imim2i 12 | . . . . . . . . 9 |
16 | biimpr 129 | . . . . . . . . . . 11 | |
17 | 16 | imim2i 12 | . . . . . . . . . 10 |
18 | an31 554 | . . . . . . . . . . . 12 | |
19 | 18 | imbi1i 237 | . . . . . . . . . . 11 |
20 | impexp 261 | . . . . . . . . . . 11 | |
21 | impexp 261 | . . . . . . . . . . 11 | |
22 | 19, 20, 21 | 3bitr3i 209 | . . . . . . . . . 10 |
23 | 17, 22 | sylib 121 | . . . . . . . . 9 |
24 | 15, 23 | syl 14 | . . . . . . . 8 |
25 | 24 | 2alimi 1444 | . . . . . . 7 |
26 | 19.23v 1871 | . . . . . . . . . 10 | |
27 | an12 551 | . . . . . . . . . . . . . 14 | |
28 | eleq1 2229 | . . . . . . . . . . . . . . . 16 | |
29 | 28 | adantr 274 | . . . . . . . . . . . . . . 15 |
30 | 29 | pm5.32ri 451 | . . . . . . . . . . . . . 14 |
31 | 27, 30 | bitr4i 186 | . . . . . . . . . . . . 13 |
32 | 31 | exbii 1593 | . . . . . . . . . . . 12 |
33 | 19.42v 1894 | . . . . . . . . . . . 12 | |
34 | 32, 33 | bitri 183 | . . . . . . . . . . 11 |
35 | 34 | imbi1i 237 | . . . . . . . . . 10 |
36 | 26, 35 | bitri 183 | . . . . . . . . 9 |
37 | 36 | albii 1458 | . . . . . . . 8 |
38 | 19.21v 1861 | . . . . . . . 8 | |
39 | 37, 38 | bitri 183 | . . . . . . 7 |
40 | 25, 39 | sylib 121 | . . . . . 6 |
41 | 40 | expd 256 | . . . . 5 |
42 | 41 | reximdvai 2566 | . . . 4 |
43 | 13, 42 | syl5bi 151 | . . 3 |
44 | 43 | imp 123 | . 2 |
45 | pm4.24 393 | . . . . . . . . 9 | |
46 | 45 | biimpi 119 | . . . . . . . 8 |
47 | anim12 342 | . . . . . . . 8 | |
48 | eqtr3 2185 | . . . . . . . 8 | |
49 | 46, 47, 48 | syl56 34 | . . . . . . 7 |
50 | 49 | alanimi 1447 | . . . . . 6 |
51 | 19.23v 1871 | . . . . . . . 8 | |
52 | 51 | biimpi 119 | . . . . . . 7 |
53 | 52 | com12 30 | . . . . . 6 |
54 | 50, 53 | syl5 32 | . . . . 5 |
55 | 54 | a1d 22 | . . . 4 |
56 | 55 | ralrimivv 2547 | . . 3 |
57 | 56 | adantl 275 | . 2 |
58 | eqeq1 2172 | . . . . 5 | |
59 | 58 | imbi2d 229 | . . . 4 |
60 | 59 | albidv 1812 | . . 3 |
61 | 60 | reu4 2920 | . 2 |
62 | 44, 57, 61 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |