| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reuind | Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
| Ref | Expression |
|---|---|
| reuind.1 |
|
| reuind.2 |
|
| Ref | Expression |
|---|---|
| reuind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuind.2 |
. . . . . . . 8
| |
| 2 | 1 | eleq1d 2265 |
. . . . . . 7
|
| 3 | reuind.1 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 473 |
. . . . . 6
|
| 5 | 4 | cbvexv 1933 |
. . . . 5
|
| 6 | r19.41v 2653 |
. . . . . . 7
| |
| 7 | 6 | exbii 1619 |
. . . . . 6
|
| 8 | rexcom4 2786 |
. . . . . 6
| |
| 9 | risset 2525 |
. . . . . . . 8
| |
| 10 | 9 | anbi1i 458 |
. . . . . . 7
|
| 11 | 10 | exbii 1619 |
. . . . . 6
|
| 12 | 7, 8, 11 | 3bitr4ri 213 |
. . . . 5
|
| 13 | 5, 12 | bitri 184 |
. . . 4
|
| 14 | eqeq2 2206 |
. . . . . . . . . 10
| |
| 15 | 14 | imim2i 12 |
. . . . . . . . 9
|
| 16 | biimpr 130 |
. . . . . . . . . . 11
| |
| 17 | 16 | imim2i 12 |
. . . . . . . . . 10
|
| 18 | an31 564 |
. . . . . . . . . . . 12
| |
| 19 | 18 | imbi1i 238 |
. . . . . . . . . . 11
|
| 20 | impexp 263 |
. . . . . . . . . . 11
| |
| 21 | impexp 263 |
. . . . . . . . . . 11
| |
| 22 | 19, 20, 21 | 3bitr3i 210 |
. . . . . . . . . 10
|
| 23 | 17, 22 | sylib 122 |
. . . . . . . . 9
|
| 24 | 15, 23 | syl 14 |
. . . . . . . 8
|
| 25 | 24 | 2alimi 1470 |
. . . . . . 7
|
| 26 | 19.23v 1897 |
. . . . . . . . . 10
| |
| 27 | an12 561 |
. . . . . . . . . . . . . 14
| |
| 28 | eleq1 2259 |
. . . . . . . . . . . . . . . 16
| |
| 29 | 28 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 30 | 29 | pm5.32ri 455 |
. . . . . . . . . . . . . 14
|
| 31 | 27, 30 | bitr4i 187 |
. . . . . . . . . . . . 13
|
| 32 | 31 | exbii 1619 |
. . . . . . . . . . . 12
|
| 33 | 19.42v 1921 |
. . . . . . . . . . . 12
| |
| 34 | 32, 33 | bitri 184 |
. . . . . . . . . . 11
|
| 35 | 34 | imbi1i 238 |
. . . . . . . . . 10
|
| 36 | 26, 35 | bitri 184 |
. . . . . . . . 9
|
| 37 | 36 | albii 1484 |
. . . . . . . 8
|
| 38 | 19.21v 1887 |
. . . . . . . 8
| |
| 39 | 37, 38 | bitri 184 |
. . . . . . 7
|
| 40 | 25, 39 | sylib 122 |
. . . . . 6
|
| 41 | 40 | expd 258 |
. . . . 5
|
| 42 | 41 | reximdvai 2597 |
. . . 4
|
| 43 | 13, 42 | biimtrid 152 |
. . 3
|
| 44 | 43 | imp 124 |
. 2
|
| 45 | pm4.24 395 |
. . . . . . . . 9
| |
| 46 | 45 | biimpi 120 |
. . . . . . . 8
|
| 47 | anim12 344 |
. . . . . . . 8
| |
| 48 | eqtr3 2216 |
. . . . . . . 8
| |
| 49 | 46, 47, 48 | syl56 34 |
. . . . . . 7
|
| 50 | 49 | alanimi 1473 |
. . . . . 6
|
| 51 | 19.23v 1897 |
. . . . . . . 8
| |
| 52 | 51 | biimpi 120 |
. . . . . . 7
|
| 53 | 52 | com12 30 |
. . . . . 6
|
| 54 | 50, 53 | syl5 32 |
. . . . 5
|
| 55 | 54 | a1d 22 |
. . . 4
|
| 56 | 55 | ralrimivv 2578 |
. . 3
|
| 57 | 56 | adantl 277 |
. 2
|
| 58 | eqeq1 2203 |
. . . . 5
| |
| 59 | 58 | imbi2d 230 |
. . . 4
|
| 60 | 59 | albidv 1838 |
. . 3
|
| 61 | 60 | reu4 2958 |
. 2
|
| 62 | 44, 57, 61 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |