| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reuind | Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) | 
| Ref | Expression | 
|---|---|
| reuind.1 | 
 | 
| reuind.2 | 
 | 
| Ref | Expression | 
|---|---|
| reuind | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reuind.2 | 
. . . . . . . 8
 | |
| 2 | 1 | eleq1d 2265 | 
. . . . . . 7
 | 
| 3 | reuind.1 | 
. . . . . . 7
 | |
| 4 | 2, 3 | anbi12d 473 | 
. . . . . 6
 | 
| 5 | 4 | cbvexv 1933 | 
. . . . 5
 | 
| 6 | r19.41v 2653 | 
. . . . . . 7
 | |
| 7 | 6 | exbii 1619 | 
. . . . . 6
 | 
| 8 | rexcom4 2786 | 
. . . . . 6
 | |
| 9 | risset 2525 | 
. . . . . . . 8
 | |
| 10 | 9 | anbi1i 458 | 
. . . . . . 7
 | 
| 11 | 10 | exbii 1619 | 
. . . . . 6
 | 
| 12 | 7, 8, 11 | 3bitr4ri 213 | 
. . . . 5
 | 
| 13 | 5, 12 | bitri 184 | 
. . . 4
 | 
| 14 | eqeq2 2206 | 
. . . . . . . . . 10
 | |
| 15 | 14 | imim2i 12 | 
. . . . . . . . 9
 | 
| 16 | biimpr 130 | 
. . . . . . . . . . 11
 | |
| 17 | 16 | imim2i 12 | 
. . . . . . . . . 10
 | 
| 18 | an31 564 | 
. . . . . . . . . . . 12
 | |
| 19 | 18 | imbi1i 238 | 
. . . . . . . . . . 11
 | 
| 20 | impexp 263 | 
. . . . . . . . . . 11
 | |
| 21 | impexp 263 | 
. . . . . . . . . . 11
 | |
| 22 | 19, 20, 21 | 3bitr3i 210 | 
. . . . . . . . . 10
 | 
| 23 | 17, 22 | sylib 122 | 
. . . . . . . . 9
 | 
| 24 | 15, 23 | syl 14 | 
. . . . . . . 8
 | 
| 25 | 24 | 2alimi 1470 | 
. . . . . . 7
 | 
| 26 | 19.23v 1897 | 
. . . . . . . . . 10
 | |
| 27 | an12 561 | 
. . . . . . . . . . . . . 14
 | |
| 28 | eleq1 2259 | 
. . . . . . . . . . . . . . . 16
 | |
| 29 | 28 | adantr 276 | 
. . . . . . . . . . . . . . 15
 | 
| 30 | 29 | pm5.32ri 455 | 
. . . . . . . . . . . . . 14
 | 
| 31 | 27, 30 | bitr4i 187 | 
. . . . . . . . . . . . 13
 | 
| 32 | 31 | exbii 1619 | 
. . . . . . . . . . . 12
 | 
| 33 | 19.42v 1921 | 
. . . . . . . . . . . 12
 | |
| 34 | 32, 33 | bitri 184 | 
. . . . . . . . . . 11
 | 
| 35 | 34 | imbi1i 238 | 
. . . . . . . . . 10
 | 
| 36 | 26, 35 | bitri 184 | 
. . . . . . . . 9
 | 
| 37 | 36 | albii 1484 | 
. . . . . . . 8
 | 
| 38 | 19.21v 1887 | 
. . . . . . . 8
 | |
| 39 | 37, 38 | bitri 184 | 
. . . . . . 7
 | 
| 40 | 25, 39 | sylib 122 | 
. . . . . 6
 | 
| 41 | 40 | expd 258 | 
. . . . 5
 | 
| 42 | 41 | reximdvai 2597 | 
. . . 4
 | 
| 43 | 13, 42 | biimtrid 152 | 
. . 3
 | 
| 44 | 43 | imp 124 | 
. 2
 | 
| 45 | pm4.24 395 | 
. . . . . . . . 9
 | |
| 46 | 45 | biimpi 120 | 
. . . . . . . 8
 | 
| 47 | anim12 344 | 
. . . . . . . 8
 | |
| 48 | eqtr3 2216 | 
. . . . . . . 8
 | |
| 49 | 46, 47, 48 | syl56 34 | 
. . . . . . 7
 | 
| 50 | 49 | alanimi 1473 | 
. . . . . 6
 | 
| 51 | 19.23v 1897 | 
. . . . . . . 8
 | |
| 52 | 51 | biimpi 120 | 
. . . . . . 7
 | 
| 53 | 52 | com12 30 | 
. . . . . 6
 | 
| 54 | 50, 53 | syl5 32 | 
. . . . 5
 | 
| 55 | 54 | a1d 22 | 
. . . 4
 | 
| 56 | 55 | ralrimivv 2578 | 
. . 3
 | 
| 57 | 56 | adantl 277 | 
. 2
 | 
| 58 | eqeq1 2203 | 
. . . . 5
 | |
| 59 | 58 | imbi2d 230 | 
. . . 4
 | 
| 60 | 59 | albidv 1838 | 
. . 3
 | 
| 61 | 60 | reu4 2958 | 
. 2
 | 
| 62 | 44, 57, 61 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |