| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv2 | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 |
|
| Ref | Expression |
|---|---|
| reximdv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 |
. . 3
| |
| 2 | 1 | eximdv 1902 |
. 2
|
| 3 | df-rex 2489 |
. 2
| |
| 4 | df-rex 2489 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-rex 2489 |
| This theorem is referenced by: reximssdv 2609 ssrexv 3257 ssimaex 5639 ico0 10402 ioc0 10403 r19.2uz 11275 unitgrp 13849 lgsquadlem2 15526 trilpolemlt1 15942 |
| Copyright terms: Public domain | W3C validator |