ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimd2 Unicode version

Theorem rexlimd2 2592
Description: Version of rexlimd 2591 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
rexlimd2.1  |-  F/ x ph
rexlimd2.2  |-  ( ph  ->  F/ x ch )
rexlimd2.3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimd2  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )

Proof of Theorem rexlimd2
StepHypRef Expression
1 rexlimd2.1 . . 3  |-  F/ x ph
2 rexlimd2.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
31, 2ralrimi 2548 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
4 rexlimd2.2 . . 3  |-  ( ph  ->  F/ x ch )
5 r19.23t 2584 . . 3  |-  ( F/ x ch  ->  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) ) )
73, 6mpbid 147 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1460    e. wcel 2148   A.wral 2455   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  sbcrext  3041
  Copyright terms: Public domain W3C validator