ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimd2 Unicode version

Theorem rexlimd2 2581
Description: Version of rexlimd 2580 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
rexlimd2.1  |-  F/ x ph
rexlimd2.2  |-  ( ph  ->  F/ x ch )
rexlimd2.3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimd2  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )

Proof of Theorem rexlimd2
StepHypRef Expression
1 rexlimd2.1 . . 3  |-  F/ x ph
2 rexlimd2.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
31, 2ralrimi 2537 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
4 rexlimd2.2 . . 3  |-  ( ph  ->  F/ x ch )
5 r19.23t 2573 . . 3  |-  ( F/ x ch  ->  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) ) )
73, 6mpbid 146 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448    e. wcel 2136   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  sbcrext  3028
  Copyright terms: Public domain W3C validator