ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv Unicode version

Theorem rexlimdv 2610
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypothesis
Ref Expression
rexlimdv.1  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdv  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdv
StepHypRef Expression
1 nfv 1539 . 2  |-  F/ x ph
2 nfv 1539 . 2  |-  F/ x ch
3 rexlimdv.1 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
41, 2, 3rexlimd 2608 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  rexlimdva  2611  rexlimdv3a  2613  rexlimdva2  2614  rexlimdvw  2615  rexlimdvv  2618  ssorduni  4519  funcnvuni  5323  dffo3  5705  smoiun  6354  tfrlem9  6372  ordiso2  7094  axprecex  7940  recexap  8672  zdiv  9405  btwnz  9436  lbzbi  9681  imasgrp2  13180  imasrng  13452  imasring  13560  neibl  14659  metcnp3  14679
  Copyright terms: Public domain W3C validator