ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv Unicode version

Theorem rexlimdv 2582
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypothesis
Ref Expression
rexlimdv.1  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdv  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ph
2 nfv 1516 . 2  |-  F/ x ch
3 rexlimdv.1 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
41, 2, 3rexlimd 2580 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  rexlimdva  2583  rexlimdv3a  2585  rexlimdva2  2586  rexlimdvw  2587  rexlimdvv  2590  ssorduni  4464  funcnvuni  5257  dffo3  5632  smoiun  6269  tfrlem9  6287  ordiso2  7000  axprecex  7821  recexap  8550  zdiv  9279  btwnz  9310  lbzbi  9554  neibl  13131  metcnp3  13151
  Copyright terms: Public domain W3C validator