ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv Unicode version

Theorem rexlimdv 2488
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypothesis
Ref Expression
rexlimdv.1  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdv  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdv
StepHypRef Expression
1 nfv 1466 . 2  |-  F/ x ph
2 nfv 1466 . 2  |-  F/ x ch
3 rexlimdv.1 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
41, 2, 3rexlimd 2486 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438   E.wrex 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-ral 2364  df-rex 2365
This theorem is referenced by:  rexlimdva  2489  rexlimdv3a  2491  rexlimdvw  2492  rexlimdvv  2495  trintssmOLD  3953  ssorduni  4304  funcnvuni  5083  dffo3  5446  smoiun  6066  tfrlem9  6084  ordiso2  6728  axprecex  7415  recexap  8122  zdiv  8834  btwnz  8865  lbzbi  9101
  Copyright terms: Public domain W3C validator