Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcrext | Unicode version |
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcrext |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2969 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | nfnfc1 2320 | . . 3 | |
4 | id 19 | . . . 4 | |
5 | nfcvd 2318 | . . . 4 | |
6 | 4, 5 | nfeld 2333 | . . 3 |
7 | sbcex 2969 | . . . 4 | |
8 | 7 | 2a1i 27 | . . 3 |
9 | 3, 6, 8 | rexlimd2 2590 | . 2 |
10 | sbcco 2982 | . . . 4 | |
11 | simpl 109 | . . . . 5 | |
12 | sbsbc 2964 | . . . . . . 7 | |
13 | nfcv 2317 | . . . . . . . . 9 | |
14 | nfs1v 1937 | . . . . . . . . 9 | |
15 | 13, 14 | nfrexxy 2514 | . . . . . . . 8 |
16 | sbequ12 1769 | . . . . . . . . 9 | |
17 | 16 | rexbidv 2476 | . . . . . . . 8 |
18 | 15, 17 | sbie 1789 | . . . . . . 7 |
19 | 12, 18 | bitr3i 186 | . . . . . 6 |
20 | nfcvd 2318 | . . . . . . . . . 10 | |
21 | 20, 4 | nfeqd 2332 | . . . . . . . . 9 |
22 | 3, 21 | nfan1 1562 | . . . . . . . 8 |
23 | dfsbcq2 2963 | . . . . . . . . 9 | |
24 | 23 | adantl 277 | . . . . . . . 8 |
25 | 22, 24 | rexbid 2474 | . . . . . . 7 |
26 | 25 | adantll 476 | . . . . . 6 |
27 | 19, 26 | bitrid 192 | . . . . 5 |
28 | 11, 27 | sbcied 2997 | . . . 4 |
29 | 10, 28 | bitr3id 194 | . . 3 |
30 | 29 | expcom 116 | . 2 |
31 | 2, 9, 30 | pm5.21ndd 705 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wsb 1760 wcel 2146 wnfc 2304 wrex 2454 cvv 2735 wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 |
This theorem is referenced by: sbcrex 3040 |
Copyright terms: Public domain | W3C validator |