| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcrext | Unicode version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcrext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3037 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | nfnfc1 2375 |
. . 3
| |
| 4 | id 19 |
. . . 4
| |
| 5 | nfcvd 2373 |
. . . 4
| |
| 6 | 4, 5 | nfeld 2388 |
. . 3
|
| 7 | sbcex 3037 |
. . . 4
| |
| 8 | 7 | 2a1i 27 |
. . 3
|
| 9 | 3, 6, 8 | rexlimd2 2646 |
. 2
|
| 10 | sbcco 3050 |
. . . 4
| |
| 11 | simpl 109 |
. . . . 5
| |
| 12 | sbsbc 3032 |
. . . . . . 7
| |
| 13 | nfcv 2372 |
. . . . . . . . 9
| |
| 14 | nfs1v 1990 |
. . . . . . . . 9
| |
| 15 | 13, 14 | nfrexw 2569 |
. . . . . . . 8
|
| 16 | sbequ12 1817 |
. . . . . . . . 9
| |
| 17 | 16 | rexbidv 2531 |
. . . . . . . 8
|
| 18 | 15, 17 | sbie 1837 |
. . . . . . 7
|
| 19 | 12, 18 | bitr3i 186 |
. . . . . 6
|
| 20 | nfcvd 2373 |
. . . . . . . . . 10
| |
| 21 | 20, 4 | nfeqd 2387 |
. . . . . . . . 9
|
| 22 | 3, 21 | nfan1 1610 |
. . . . . . . 8
|
| 23 | dfsbcq2 3031 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 22, 24 | rexbid 2529 |
. . . . . . 7
|
| 26 | 25 | adantll 476 |
. . . . . 6
|
| 27 | 19, 26 | bitrid 192 |
. . . . 5
|
| 28 | 11, 27 | sbcied 3065 |
. . . 4
|
| 29 | 10, 28 | bitr3id 194 |
. . 3
|
| 30 | 29 | expcom 116 |
. 2
|
| 31 | 2, 9, 30 | pm5.21ndd 710 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: sbcrex 3108 |
| Copyright terms: Public domain | W3C validator |