| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcrext | Unicode version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcrext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3014 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | nfnfc1 2353 |
. . 3
| |
| 4 | id 19 |
. . . 4
| |
| 5 | nfcvd 2351 |
. . . 4
| |
| 6 | 4, 5 | nfeld 2366 |
. . 3
|
| 7 | sbcex 3014 |
. . . 4
| |
| 8 | 7 | 2a1i 27 |
. . 3
|
| 9 | 3, 6, 8 | rexlimd2 2623 |
. 2
|
| 10 | sbcco 3027 |
. . . 4
| |
| 11 | simpl 109 |
. . . . 5
| |
| 12 | sbsbc 3009 |
. . . . . . 7
| |
| 13 | nfcv 2350 |
. . . . . . . . 9
| |
| 14 | nfs1v 1968 |
. . . . . . . . 9
| |
| 15 | 13, 14 | nfrexw 2547 |
. . . . . . . 8
|
| 16 | sbequ12 1795 |
. . . . . . . . 9
| |
| 17 | 16 | rexbidv 2509 |
. . . . . . . 8
|
| 18 | 15, 17 | sbie 1815 |
. . . . . . 7
|
| 19 | 12, 18 | bitr3i 186 |
. . . . . 6
|
| 20 | nfcvd 2351 |
. . . . . . . . . 10
| |
| 21 | 20, 4 | nfeqd 2365 |
. . . . . . . . 9
|
| 22 | 3, 21 | nfan1 1588 |
. . . . . . . 8
|
| 23 | dfsbcq2 3008 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 22, 24 | rexbid 2507 |
. . . . . . 7
|
| 26 | 25 | adantll 476 |
. . . . . 6
|
| 27 | 19, 26 | bitrid 192 |
. . . . 5
|
| 28 | 11, 27 | sbcied 3042 |
. . . 4
|
| 29 | 10, 28 | bitr3id 194 |
. . 3
|
| 30 | 29 | expcom 116 |
. 2
|
| 31 | 2, 9, 30 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 |
| This theorem is referenced by: sbcrex 3085 |
| Copyright terms: Public domain | W3C validator |