| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcrext | Unicode version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcrext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3007 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | nfnfc1 2351 |
. . 3
| |
| 4 | id 19 |
. . . 4
| |
| 5 | nfcvd 2349 |
. . . 4
| |
| 6 | 4, 5 | nfeld 2364 |
. . 3
|
| 7 | sbcex 3007 |
. . . 4
| |
| 8 | 7 | 2a1i 27 |
. . 3
|
| 9 | 3, 6, 8 | rexlimd2 2621 |
. 2
|
| 10 | sbcco 3020 |
. . . 4
| |
| 11 | simpl 109 |
. . . . 5
| |
| 12 | sbsbc 3002 |
. . . . . . 7
| |
| 13 | nfcv 2348 |
. . . . . . . . 9
| |
| 14 | nfs1v 1967 |
. . . . . . . . 9
| |
| 15 | 13, 14 | nfrexw 2545 |
. . . . . . . 8
|
| 16 | sbequ12 1794 |
. . . . . . . . 9
| |
| 17 | 16 | rexbidv 2507 |
. . . . . . . 8
|
| 18 | 15, 17 | sbie 1814 |
. . . . . . 7
|
| 19 | 12, 18 | bitr3i 186 |
. . . . . 6
|
| 20 | nfcvd 2349 |
. . . . . . . . . 10
| |
| 21 | 20, 4 | nfeqd 2363 |
. . . . . . . . 9
|
| 22 | 3, 21 | nfan1 1587 |
. . . . . . . 8
|
| 23 | dfsbcq2 3001 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 22, 24 | rexbid 2505 |
. . . . . . 7
|
| 26 | 25 | adantll 476 |
. . . . . 6
|
| 27 | 19, 26 | bitrid 192 |
. . . . 5
|
| 28 | 11, 27 | sbcied 3035 |
. . . 4
|
| 29 | 10, 28 | bitr3id 194 |
. . 3
|
| 30 | 29 | expcom 116 |
. 2
|
| 31 | 2, 9, 30 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 |
| This theorem is referenced by: sbcrex 3078 |
| Copyright terms: Public domain | W3C validator |