Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcrext | Unicode version |
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcrext |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2959 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | nfnfc1 2311 | . . 3 | |
4 | id 19 | . . . 4 | |
5 | nfcvd 2309 | . . . 4 | |
6 | 4, 5 | nfeld 2324 | . . 3 |
7 | sbcex 2959 | . . . 4 | |
8 | 7 | 2a1i 27 | . . 3 |
9 | 3, 6, 8 | rexlimd2 2581 | . 2 |
10 | sbcco 2972 | . . . 4 | |
11 | simpl 108 | . . . . 5 | |
12 | sbsbc 2955 | . . . . . . 7 | |
13 | nfcv 2308 | . . . . . . . . 9 | |
14 | nfs1v 1927 | . . . . . . . . 9 | |
15 | 13, 14 | nfrexxy 2505 | . . . . . . . 8 |
16 | sbequ12 1759 | . . . . . . . . 9 | |
17 | 16 | rexbidv 2467 | . . . . . . . 8 |
18 | 15, 17 | sbie 1779 | . . . . . . 7 |
19 | 12, 18 | bitr3i 185 | . . . . . 6 |
20 | nfcvd 2309 | . . . . . . . . . 10 | |
21 | 20, 4 | nfeqd 2323 | . . . . . . . . 9 |
22 | 3, 21 | nfan1 1552 | . . . . . . . 8 |
23 | dfsbcq2 2954 | . . . . . . . . 9 | |
24 | 23 | adantl 275 | . . . . . . . 8 |
25 | 22, 24 | rexbid 2465 | . . . . . . 7 |
26 | 25 | adantll 468 | . . . . . 6 |
27 | 19, 26 | syl5bb 191 | . . . . 5 |
28 | 11, 27 | sbcied 2987 | . . . 4 |
29 | 10, 28 | bitr3id 193 | . . 3 |
30 | 29 | expcom 115 | . 2 |
31 | 2, 9, 30 | pm5.21ndd 695 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wsb 1750 wcel 2136 wnfc 2295 wrex 2445 cvv 2726 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbcrex 3030 |
Copyright terms: Public domain | W3C validator |