ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrext Unicode version

Theorem sbcrext 3055
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcrext  |-  ( F/_ y A  ->  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph ) )
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)

Proof of Theorem sbcrext
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 2986 . . 3  |-  ( [. A  /  x ]. E. y  e.  B  ph  ->  A  e.  _V )
21a1i 9 . 2  |-  ( F/_ y A  ->  ( [. A  /  x ]. E. y  e.  B  ph  ->  A  e.  _V ) )
3 nfnfc1 2335 . . 3  |-  F/ y
F/_ y A
4 id 19 . . . 4  |-  ( F/_ y A  ->  F/_ y A )
5 nfcvd 2333 . . . 4  |-  ( F/_ y A  ->  F/_ y _V )
64, 5nfeld 2348 . . 3  |-  ( F/_ y A  ->  F/ y  A  e.  _V )
7 sbcex 2986 . . . 4  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
872a1i 27 . . 3  |-  ( F/_ y A  ->  ( y  e.  B  ->  ( [. A  /  x ]. ph  ->  A  e.  _V ) ) )
93, 6, 8rexlimd2 2605 . 2  |-  ( F/_ y A  ->  ( E. y  e.  B  [. A  /  x ]. ph  ->  A  e.  _V ) )
10 sbcco 2999 . . . 4  |-  ( [. A  /  z ]. [. z  /  x ]. E. y  e.  B  ph  <->  [. A  /  x ]. E. y  e.  B  ph )
11 simpl 109 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ y A )  ->  A  e.  _V )
12 sbsbc 2981 . . . . . . 7  |-  ( [ z  /  x ] E. y  e.  B  ph  <->  [. z  /  x ]. E. y  e.  B  ph )
13 nfcv 2332 . . . . . . . . 9  |-  F/_ x B
14 nfs1v 1951 . . . . . . . . 9  |-  F/ x [ z  /  x ] ph
1513, 14nfrexxy 2529 . . . . . . . 8  |-  F/ x E. y  e.  B  [ z  /  x ] ph
16 sbequ12 1782 . . . . . . . . 9  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
1716rexbidv 2491 . . . . . . . 8  |-  ( x  =  z  ->  ( E. y  e.  B  ph  <->  E. y  e.  B  [
z  /  x ] ph ) )
1815, 17sbie 1802 . . . . . . 7  |-  ( [ z  /  x ] E. y  e.  B  ph  <->  E. y  e.  B  [
z  /  x ] ph )
1912, 18bitr3i 186 . . . . . 6  |-  ( [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [ z  /  x ] ph )
20 nfcvd 2333 . . . . . . . . . 10  |-  ( F/_ y A  ->  F/_ y
z )
2120, 4nfeqd 2347 . . . . . . . . 9  |-  ( F/_ y A  ->  F/ y  z  =  A )
223, 21nfan1 1575 . . . . . . . 8  |-  F/ y ( F/_ y A  /\  z  =  A )
23 dfsbcq2 2980 . . . . . . . . 9  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
2423adantl 277 . . . . . . . 8  |-  ( (
F/_ y A  /\  z  =  A )  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
2522, 24rexbid 2489 . . . . . . 7  |-  ( (
F/_ y A  /\  z  =  A )  ->  ( E. y  e.  B  [ z  /  x ] ph  <->  E. y  e.  B  [. A  /  x ]. ph ) )
2625adantll 476 . . . . . 6  |-  ( ( ( A  e.  _V  /\ 
F/_ y A )  /\  z  =  A )  ->  ( E. y  e.  B  [
z  /  x ] ph 
<->  E. y  e.  B  [. A  /  x ]. ph ) )
2719, 26bitrid 192 . . . . 5  |-  ( ( ( A  e.  _V  /\ 
F/_ y A )  /\  z  =  A )  ->  ( [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph ) )
2811, 27sbcied 3014 . . . 4  |-  ( ( A  e.  _V  /\  F/_ y A )  -> 
( [. A  /  z ]. [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
)
2910, 28bitr3id 194 . . 3  |-  ( ( A  e.  _V  /\  F/_ y A )  -> 
( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
)
3029expcom 116 . 2  |-  ( F/_ y A  ->  ( A  e.  _V  ->  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
) )
312, 9, 30pm5.21ndd 706 1  |-  ( F/_ y A  ->  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   [wsb 1773    e. wcel 2160   F/_wnfc 2319   E.wrex 2469   _Vcvv 2752   [.wsbc 2977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978
This theorem is referenced by:  sbcrex  3057
  Copyright terms: Public domain W3C validator