ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6x Unicode version

Theorem sb6x 1767
Description: Equivalence involving substitution for a variable not free. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
sb6x.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
sb6x  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)

Proof of Theorem sb6x
StepHypRef Expression
1 sb6x.1 . . 3  |-  ( ph  ->  A. x ph )
21sbh 1764 . 2  |-  ( [ y  /  x ] ph 
<-> 
ph )
3 biidd 171 . . 3  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
41, 3equsalh 1714 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  ph )
52, 4bitr4i 186 1  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator