| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equsalh | Unicode version | ||
| Description: A useful equivalence related to substitution. New proofs should use equsal 1741 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| equsalh.1 | 
 | 
| equsalh.2 | 
 | 
| Ref | Expression | 
|---|---|
| equsalh | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equsalh.2 | 
. . . . 5
 | |
| 2 | equsalh.1 | 
. . . . . 6
 | |
| 3 | 2 | 19.3h 1567 | 
. . . . 5
 | 
| 4 | 1, 3 | bitr4di 198 | 
. . . 4
 | 
| 5 | 4 | pm5.74i 180 | 
. . 3
 | 
| 6 | 5 | albii 1484 | 
. 2
 | 
| 7 | 2 | a1d 22 | 
. . . 4
 | 
| 8 | 2, 7 | alrimih 1483 | 
. . 3
 | 
| 9 | ax9o 1712 | 
. . 3
 | |
| 10 | 8, 9 | impbii 126 | 
. 2
 | 
| 11 | 6, 10 | bitr4i 187 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sb6x 1793 dvelimfALT2 1831 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 | 
| Copyright terms: Public domain | W3C validator |