ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsalh Unicode version

Theorem equsalh 1726
Description: A useful equivalence related to substitution. New proofs should use equsal 1727 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsalh.1  |-  ( ps 
->  A. x ps )
equsalh.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
equsalh  |-  ( A. x ( x  =  y  ->  ph )  <->  ps )

Proof of Theorem equsalh
StepHypRef Expression
1 equsalh.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 equsalh.1 . . . . . 6  |-  ( ps 
->  A. x ps )
3219.3h 1553 . . . . 5  |-  ( A. x ps  <->  ps )
41, 3bitr4di 198 . . . 4  |-  ( x  =  y  ->  ( ph 
<-> 
A. x ps )
)
54pm5.74i 180 . . 3  |-  ( ( x  =  y  ->  ph )  <->  ( x  =  y  ->  A. x ps ) )
65albii 1470 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  A. x
( x  =  y  ->  A. x ps )
)
72a1d 22 . . . 4  |-  ( ps 
->  ( x  =  y  ->  A. x ps )
)
82, 7alrimih 1469 . . 3  |-  ( ps 
->  A. x ( x  =  y  ->  A. x ps ) )
9 ax9o 1698 . . 3  |-  ( A. x ( x  =  y  ->  A. x ps )  ->  ps )
108, 9impbii 126 . 2  |-  ( ps  <->  A. x ( x  =  y  ->  A. x ps ) )
116, 10bitr4i 187 1  |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sb6x  1779  dvelimfALT2  1817  dvelimALT  2010  dvelimfv  2011  dvelimor  2018
  Copyright terms: Public domain W3C validator