ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6x GIF version

Theorem sb6x 1767
Description: Equivalence involving substitution for a variable not free. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
sb6x.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
sb6x ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb6x
StepHypRef Expression
1 sb6x.1 . . 3 (𝜑 → ∀𝑥𝜑)
21sbh 1764 . 2 ([𝑦 / 𝑥]𝜑𝜑)
3 biidd 171 . . 3 (𝑥 = 𝑦 → (𝜑𝜑))
41, 3equsalh 1714 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
52, 4bitr4i 186 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator