ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiev Unicode version

Theorem sbiev 1780
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 1779 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.)
Hypotheses
Ref Expression
sbiev.1  |-  F/ x ps
sbiev.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbiev  |-  ( [ y  /  x ] ph 
<->  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem sbiev
StepHypRef Expression
1 sbiev.1 . 2  |-  F/ x ps
2 sbiev.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2sbie 1779 1  |-  ( [ y  /  x ] ph 
<->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbco2v  1936  cbvabw  2289  csbcow  3056
  Copyright terms: Public domain W3C validator