ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsalv Unicode version

Theorem equsalv 1786
Description: An equivalence related to implicit substitution. Version of equsal 1720 with a disjoint variable condition. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
equsalv.nf  |-  F/ x ps
equsalv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
equsalv  |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem equsalv
StepHypRef Expression
1 equsalv.nf . . 3  |-  F/ x ps
2119.23 1671 . 2  |-  ( A. x ( x  =  y  ->  ps )  <->  ( E. x  x  =  y  ->  ps )
)
3 equsalv.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
43pm5.74i 179 . . 3  |-  ( ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ps )
)
54albii 1463 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  A. x
( x  =  y  ->  ps ) )
6 a9ev 1690 . . 3  |-  E. x  x  =  y
76a1bi 242 . 2  |-  ( ps  <->  ( E. x  x  =  y  ->  ps )
)
82, 5, 73bitr4i 211 1  |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   F/wnf 1453   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfabdw  2331
  Copyright terms: Public domain W3C validator