Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2v Unicode version

Theorem sbco2v 1876
 Description: This is a version of sbco2 1894 where is distinct from . (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2v.1
Assertion
Ref Expression
sbco2v
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sbco2v
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbco2v.1 . . . 4
21sbco2vlem 1875 . . 3
32sbbii 1702 . 2
4 ax-17 1471 . . 3
54sbco2vlem 1875 . 2
6 ax-17 1471 . . 3
76sbco2vlem 1875 . 2
83, 5, 73bitr3i 209 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1294  wsb 1699 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480 This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700 This theorem is referenced by:  nfsb  1877  equsb3  1880  sbn  1881  sbim  1882  sbor  1883  sban  1884  sbco2vd  1896  sbco3v  1898  sbcom2v2  1917  sbcom2  1918  dfsb7  1922  sb7f  1923  sbal  1931  sbal1  1933  sbex  1935
 Copyright terms: Public domain W3C validator