ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2v Unicode version

Theorem sbco2v 1999
Description: Version of sbco2 2016 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
Hypothesis
Ref Expression
sbco2v.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2v  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2v
StepHypRef Expression
1 sbco2v.1 . . 3  |-  F/ z
ph
21nfsbv 1998 . 2  |-  F/ z [ y  /  x ] ph
3 sbequ 1886 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3sbiev 1838 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1506   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator