Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbcow | Unicode version |
Description: Composition law for chained substitutions into a class. Version of csbco 3041 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
csbcow |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3032 | . . . . . 6 | |
2 | 1 | abeq2i 2268 | . . . . 5 |
3 | 2 | sbcbii 2996 | . . . 4 |
4 | nfv 1508 | . . . . . . . . . 10 | |
5 | equequ2 1693 | . . . . . . . . . . . 12 | |
6 | 5 | imbi1d 230 | . . . . . . . . . . 11 |
7 | 6 | albidv 1804 | . . . . . . . . . 10 |
8 | 4, 7 | sbiev 1772 | . . . . . . . . 9 |
9 | sb6 1866 | . . . . . . . . 9 | |
10 | 8, 9 | bitr4i 186 | . . . . . . . 8 |
11 | df-clab 2144 | . . . . . . . 8 | |
12 | df-clab 2144 | . . . . . . . 8 | |
13 | 10, 11, 12 | 3bitr4i 211 | . . . . . . 7 |
14 | 13 | eqriv 2154 | . . . . . 6 |
15 | 14 | eleq2i 2224 | . . . . 5 |
16 | df-sbc 2938 | . . . . . 6 | |
17 | df-sbc 2938 | . . . . . . . . 9 | |
18 | df-clab 2144 | . . . . . . . . . 10 | |
19 | sb6 1866 | . . . . . . . . . 10 | |
20 | 18, 19 | bitri 183 | . . . . . . . . 9 |
21 | 17, 20 | bitri 183 | . . . . . . . 8 |
22 | 21 | abbii 2273 | . . . . . . 7 |
23 | 22 | eleq2i 2224 | . . . . . 6 |
24 | 16, 23 | bitri 183 | . . . . 5 |
25 | df-sbc 2938 | . . . . 5 | |
26 | 15, 24, 25 | 3bitr4i 211 | . . . 4 |
27 | 3, 26 | bitri 183 | . . 3 |
28 | 27 | abbii 2273 | . 2 |
29 | df-csb 3032 | . 2 | |
30 | df-csb 3032 | . 2 | |
31 | 28, 29, 30 | 3eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 wceq 1335 wsb 1742 wcel 2128 cab 2143 wsbc 2937 csb 3031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-sbc 2938 df-csb 3032 |
This theorem is referenced by: zproddc 11458 fprodseq 11462 |
Copyright terms: Public domain | W3C validator |