| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbcow | Unicode version | ||
| Description: Composition law for chained substitutions into a class. Version of csbco 3094 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| csbcow |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3085 |
. . . . . 6
| |
| 2 | 1 | abeq2i 2307 |
. . . . 5
|
| 3 | 2 | sbcbii 3049 |
. . . 4
|
| 4 | nfv 1542 |
. . . . . . . . . 10
| |
| 5 | equequ2 1727 |
. . . . . . . . . . . 12
| |
| 6 | 5 | imbi1d 231 |
. . . . . . . . . . 11
|
| 7 | 6 | albidv 1838 |
. . . . . . . . . 10
|
| 8 | 4, 7 | sbiev 1806 |
. . . . . . . . 9
|
| 9 | sb6 1901 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitr4i 187 |
. . . . . . . 8
|
| 11 | df-clab 2183 |
. . . . . . . 8
| |
| 12 | df-clab 2183 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . . . . 7
|
| 14 | 13 | eqriv 2193 |
. . . . . 6
|
| 15 | 14 | eleq2i 2263 |
. . . . 5
|
| 16 | df-sbc 2990 |
. . . . . 6
| |
| 17 | df-sbc 2990 |
. . . . . . . . 9
| |
| 18 | df-clab 2183 |
. . . . . . . . . 10
| |
| 19 | sb6 1901 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | bitri 184 |
. . . . . . . . 9
|
| 21 | 17, 20 | bitri 184 |
. . . . . . . 8
|
| 22 | 21 | abbii 2312 |
. . . . . . 7
|
| 23 | 22 | eleq2i 2263 |
. . . . . 6
|
| 24 | 16, 23 | bitri 184 |
. . . . 5
|
| 25 | df-sbc 2990 |
. . . . 5
| |
| 26 | 15, 24, 25 | 3bitr4i 212 |
. . . 4
|
| 27 | 3, 26 | bitri 184 |
. . 3
|
| 28 | 27 | abbii 2312 |
. 2
|
| 29 | df-csb 3085 |
. 2
| |
| 30 | df-csb 3085 |
. 2
| |
| 31 | 28, 29, 30 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: zproddc 11744 fprodseq 11748 |
| Copyright terms: Public domain | W3C validator |