Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbcow | Unicode version |
Description: Composition law for chained substitutions into a class. Version of csbco 3059 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
csbcow |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3050 | . . . . . 6 | |
2 | 1 | abeq2i 2281 | . . . . 5 |
3 | 2 | sbcbii 3014 | . . . 4 |
4 | nfv 1521 | . . . . . . . . . 10 | |
5 | equequ2 1706 | . . . . . . . . . . . 12 | |
6 | 5 | imbi1d 230 | . . . . . . . . . . 11 |
7 | 6 | albidv 1817 | . . . . . . . . . 10 |
8 | 4, 7 | sbiev 1785 | . . . . . . . . 9 |
9 | sb6 1879 | . . . . . . . . 9 | |
10 | 8, 9 | bitr4i 186 | . . . . . . . 8 |
11 | df-clab 2157 | . . . . . . . 8 | |
12 | df-clab 2157 | . . . . . . . 8 | |
13 | 10, 11, 12 | 3bitr4i 211 | . . . . . . 7 |
14 | 13 | eqriv 2167 | . . . . . 6 |
15 | 14 | eleq2i 2237 | . . . . 5 |
16 | df-sbc 2956 | . . . . . 6 | |
17 | df-sbc 2956 | . . . . . . . . 9 | |
18 | df-clab 2157 | . . . . . . . . . 10 | |
19 | sb6 1879 | . . . . . . . . . 10 | |
20 | 18, 19 | bitri 183 | . . . . . . . . 9 |
21 | 17, 20 | bitri 183 | . . . . . . . 8 |
22 | 21 | abbii 2286 | . . . . . . 7 |
23 | 22 | eleq2i 2237 | . . . . . 6 |
24 | 16, 23 | bitri 183 | . . . . 5 |
25 | df-sbc 2956 | . . . . 5 | |
26 | 15, 24, 25 | 3bitr4i 211 | . . . 4 |
27 | 3, 26 | bitri 183 | . . 3 |
28 | 27 | abbii 2286 | . 2 |
29 | df-csb 3050 | . 2 | |
30 | df-csb 3050 | . 2 | |
31 | 28, 29, 30 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 wsb 1755 wcel 2141 cab 2156 wsbc 2955 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: zproddc 11542 fprodseq 11546 |
Copyright terms: Public domain | W3C validator |