Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbcow | Unicode version |
Description: Composition law for chained substitutions into a class. Version of csbco 3055 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
csbcow |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3046 | . . . . . 6 | |
2 | 1 | abeq2i 2277 | . . . . 5 |
3 | 2 | sbcbii 3010 | . . . 4 |
4 | nfv 1516 | . . . . . . . . . 10 | |
5 | equequ2 1701 | . . . . . . . . . . . 12 | |
6 | 5 | imbi1d 230 | . . . . . . . . . . 11 |
7 | 6 | albidv 1812 | . . . . . . . . . 10 |
8 | 4, 7 | sbiev 1780 | . . . . . . . . 9 |
9 | sb6 1874 | . . . . . . . . 9 | |
10 | 8, 9 | bitr4i 186 | . . . . . . . 8 |
11 | df-clab 2152 | . . . . . . . 8 | |
12 | df-clab 2152 | . . . . . . . 8 | |
13 | 10, 11, 12 | 3bitr4i 211 | . . . . . . 7 |
14 | 13 | eqriv 2162 | . . . . . 6 |
15 | 14 | eleq2i 2233 | . . . . 5 |
16 | df-sbc 2952 | . . . . . 6 | |
17 | df-sbc 2952 | . . . . . . . . 9 | |
18 | df-clab 2152 | . . . . . . . . . 10 | |
19 | sb6 1874 | . . . . . . . . . 10 | |
20 | 18, 19 | bitri 183 | . . . . . . . . 9 |
21 | 17, 20 | bitri 183 | . . . . . . . 8 |
22 | 21 | abbii 2282 | . . . . . . 7 |
23 | 22 | eleq2i 2233 | . . . . . 6 |
24 | 16, 23 | bitri 183 | . . . . 5 |
25 | df-sbc 2952 | . . . . 5 | |
26 | 15, 24, 25 | 3bitr4i 211 | . . . 4 |
27 | 3, 26 | bitri 183 | . . 3 |
28 | 27 | abbii 2282 | . 2 |
29 | df-csb 3046 | . 2 | |
30 | df-csb 3046 | . 2 | |
31 | 28, 29, 30 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 wsb 1750 wcel 2136 cab 2151 wsbc 2951 csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: zproddc 11520 fprodseq 11524 |
Copyright terms: Public domain | W3C validator |