![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbiev | GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 1802 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.) |
Ref | Expression |
---|---|
sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbiev.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | sbiev.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | sbie 1802 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1471 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: sbco2v 1964 cbvabw 2316 csbcow 3091 |
Copyright terms: Public domain | W3C validator |