ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiev GIF version

Theorem sbiev 1780
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 1779 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 sbiev.1 . 2 𝑥𝜓
2 sbiev.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2sbie 1779 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1448  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbco2v  1936  cbvabw  2289  csbcow  3056
  Copyright terms: Public domain W3C validator