| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbiev | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 1815 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.) |
| Ref | Expression |
|---|---|
| sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
| sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbiev.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | sbiev.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | sbie 1815 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbco2v 1977 cbvabw 2329 csbcow 3106 |
| Copyright terms: Public domain | W3C validator |