| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbiev | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 1805 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| sbiev.1 | ⊢ Ⅎ𝑥𝜓 | 
| sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbiev.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | sbiev.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | sbie 1805 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbco2v 1967 cbvabw 2319 csbcow 3095 | 
| Copyright terms: Public domain | W3C validator |