ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ6 Unicode version

Theorem sbequ6 1797
Description: Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.)
Assertion
Ref Expression
sbequ6  |-  ( [ w  /  z ]  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )

Proof of Theorem sbequ6
StepHypRef Expression
1 nfnae 1736 . 2  |-  F/ z  -.  A. x  x  =  y
21sbf 1791 1  |-  ( [ w  /  z ]  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1362   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator