ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ6 Unicode version

Theorem sbequ6 1776
Description: Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.)
Assertion
Ref Expression
sbequ6  |-  ( [ w  /  z ]  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )

Proof of Theorem sbequ6
StepHypRef Expression
1 nfnae 1715 . 2  |-  F/ z  -.  A. x  x  =  y
21sbf 1770 1  |-  ( [ w  /  z ]  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1346   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator