| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbt | GIF version | ||
| Description: A substitution into a theorem remains true. (See chvar 1771 and chvarv 1956 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sbt.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbt | ⊢ [𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbt.1 | . 2 ⊢ 𝜑 | |
| 2 | 1 | nfth 1478 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 3 | 2 | sbf 1791 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ [𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: vjust 2764 |
| Copyright terms: Public domain | W3C validator |