ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbt GIF version

Theorem sbt 1795
Description: A substitution into a theorem remains true. (See chvar 1768 and chvarv 1953 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sbt.1 𝜑
Assertion
Ref Expression
sbt [𝑦 / 𝑥]𝜑

Proof of Theorem sbt
StepHypRef Expression
1 sbt.1 . 2 𝜑
21nfth 1475 . . 3 𝑥𝜑
32sbf 1788 . 2 ([𝑦 / 𝑥]𝜑𝜑)
41, 3mpbir 146 1 [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  vjust  2761
  Copyright terms: Public domain W3C validator