ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbt GIF version

Theorem sbt 1761
Description: A substitution into a theorem remains true. (See chvar 1734 and chvarv 1914 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sbt.1 𝜑
Assertion
Ref Expression
sbt [𝑦 / 𝑥]𝜑

Proof of Theorem sbt
StepHypRef Expression
1 sbt.1 . 2 𝜑
21nfth 1441 . . 3 𝑥𝜑
32sbf 1754 . 2 ([𝑦 / 𝑥]𝜑𝜑)
41, 3mpbir 145 1 [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-i9 1507  ax-ial 1511
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740
This theorem is referenced by:  vjust  2710
  Copyright terms: Public domain W3C validator