ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbt GIF version

Theorem sbt 1798
Description: A substitution into a theorem remains true. (See chvar 1771 and chvarv 1956 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sbt.1 𝜑
Assertion
Ref Expression
sbt [𝑦 / 𝑥]𝜑

Proof of Theorem sbt
StepHypRef Expression
1 sbt.1 . 2 𝜑
21nfth 1478 . . 3 𝑥𝜑
32sbf 1791 . 2 ([𝑦 / 𝑥]𝜑𝜑)
41, 3mpbir 146 1 [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  vjust  2764
  Copyright terms: Public domain W3C validator