Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbt | GIF version |
Description: A substitution into a theorem remains true. (See chvar 1734 and chvarv 1914 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sbt.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbt | ⊢ [𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbt.1 | . 2 ⊢ 𝜑 | |
2 | 1 | nfth 1441 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | 2 | sbf 1754 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 1, 3 | mpbir 145 | 1 ⊢ [𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: [wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-i9 1507 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 |
This theorem is referenced by: vjust 2710 |
Copyright terms: Public domain | W3C validator |