| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbt | GIF version | ||
| Description: A substitution into a theorem remains true. (See chvar 1779 and chvarv 1964 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sbt.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbt | ⊢ [𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbt.1 | . 2 ⊢ 𝜑 | |
| 2 | 1 | nfth 1486 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 3 | 2 | sbf 1799 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ [𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: vjust 2772 |
| Copyright terms: Public domain | W3C validator |