ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbf Unicode version

Theorem sbf 1765
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1  |-  F/ x ph
Assertion
Ref Expression
sbf  |-  ( [ y  /  x ] ph 
<-> 
ph )

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . . 3  |-  F/ x ph
21nfri 1507 . 2  |-  ( ph  ->  A. x ph )
32sbh 1764 1  |-  ( [ y  /  x ] ph 
<-> 
ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   F/wnf 1448   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbf2  1766  sbequ5  1770  sbequ6  1771  sbt  1772  sblim  1945  moimv  2080  moanim  2088  sbabel  2335  nfcdeq  2948  oprcl  3782
  Copyright terms: Public domain W3C validator