ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbf Unicode version

Theorem sbf 1800
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1  |-  F/ x ph
Assertion
Ref Expression
sbf  |-  ( [ y  /  x ] ph 
<-> 
ph )

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . . 3  |-  F/ x ph
21nfri 1542 . 2  |-  ( ph  ->  A. x ph )
32sbh 1799 1  |-  ( [ y  /  x ] ph 
<-> 
ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1483   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbf2  1801  sbequ5  1805  sbequ6  1806  sbt  1807  sblim  1985  moimv  2120  moanim  2128  sbabel  2375  nfcdeq  2995  oprcl  3843
  Copyright terms: Public domain W3C validator