ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb1 Unicode version

Theorem equsb1 1808
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb1  |-  [ y  /  x ] x  =  y

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 1790 . 2  |-  ( A. x ( x  =  y  ->  x  =  y )  ->  [ y  /  x ] x  =  y )
2 id 19 . 2  |-  ( x  =  y  ->  x  =  y )
31, 2mpg 1474 1  |-  [ y  /  x ] x  =  y
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  sbcocom  1998  elsb1  2183  elsb2  2184  pm13.183  2911  exss  4271  relelfvdm  5608
  Copyright terms: Public domain W3C validator