![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | Unicode version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 |
![]() ![]() |
mpi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 624 simplimdc 861 mp3an3 1337 3impexpbicom 1449 mpisyl 1457 equcomi 1715 equsex 1739 equsexd 1740 spimt 1747 spimeh 1750 equvini 1769 equveli 1770 sbcof2 1821 dveeq2 1826 ax11v2 1831 ax16i 1869 pm13.183 2890 euxfr2dc 2937 sbcth 2991 sbcth2 3065 ssun3 3315 ssun4 3316 ralf0 3541 exmidexmid 4211 rext 4230 exss 4242 uniopel 4271 onsucelsucexmid 4544 suc11g 4571 eunex 4575 ordsoexmid 4576 tfisi 4601 finds1 4616 omsinds 4636 relop 4792 dmrnssfld 4905 iss 4968 relcoi1 5175 nfunv 5265 funimass2 5310 fvssunirng 5546 fvmptg 5609 oprabidlem 5923 elovmpo 6091 tfrlem1 6328 oaword1 6491 0domg 6856 diffifi 6913 exmidpw 6927 djulclb 7074 0ct 7126 nlt1pig 7360 dmaddpq 7398 dmmulpq 7399 archnqq 7436 prarloclemarch2 7438 prarloclemlt 7512 cnegex 8155 nnge1 8962 zneo 9374 fsum2d 11463 fsumabs 11493 fsumiun 11505 fprod2d 11651 efne0 11706 nn0o1gt2 11930 ennnfonelemex 12440 qtopbasss 14425 reeff1o 14598 coseq0negpitopi 14661 cos02pilt1 14676 logltb 14699 bdop 15031 bj-nntrans 15107 |
Copyright terms: Public domain | W3C validator |