![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | Unicode version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 |
![]() ![]() |
mpi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 623 simplimdc 860 mp3an3 1326 3impexpbicom 1438 mpisyl 1446 equcomi 1704 equsex 1728 equsexd 1729 spimt 1736 spimeh 1739 equvini 1758 equveli 1759 sbcof2 1810 dveeq2 1815 ax11v2 1820 ax16i 1858 pm13.183 2876 euxfr2dc 2923 sbcth 2977 sbcth2 3051 ssun3 3301 ssun4 3302 ralf0 3527 exmidexmid 4197 rext 4216 exss 4228 uniopel 4257 onsucelsucexmid 4530 suc11g 4557 eunex 4561 ordsoexmid 4562 tfisi 4587 finds1 4602 omsinds 4622 relop 4778 dmrnssfld 4891 iss 4954 relcoi1 5161 nfunv 5250 funimass2 5295 fvssunirng 5531 fvmptg 5593 oprabidlem 5906 fovcl 5980 elovmpo 6072 tfrlem1 6309 oaword1 6472 0domg 6837 diffifi 6894 exmidpw 6908 djulclb 7054 0ct 7106 nlt1pig 7340 dmaddpq 7378 dmmulpq 7379 archnqq 7416 prarloclemarch2 7418 prarloclemlt 7492 cnegex 8135 nnge1 8942 zneo 9354 fsum2d 11443 fsumabs 11473 fsumiun 11485 fprod2d 11631 efne0 11686 nn0o1gt2 11910 ennnfonelemex 12415 qtopbasss 14024 reeff1o 14197 coseq0negpitopi 14260 cos02pilt1 14275 logltb 14298 bdop 14630 bj-nntrans 14706 |
Copyright terms: Public domain | W3C validator |