![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | Unicode version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 |
![]() ![]() |
mpi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 624 simplimdc 861 mp3an3 1337 3impexpbicom 1449 mpisyl 1457 equcomi 1715 equsex 1739 equsexd 1740 spimt 1747 spimeh 1750 equvini 1769 equveli 1770 sbcof2 1821 dveeq2 1826 ax11v2 1831 ax16i 1869 pm13.183 2899 euxfr2dc 2946 sbcth 3000 sbcth2 3074 ssun3 3325 ssun4 3326 ralf0 3550 exmidexmid 4226 rext 4245 exss 4257 uniopel 4286 onsucelsucexmid 4563 suc11g 4590 eunex 4594 ordsoexmid 4595 tfisi 4620 finds1 4635 omsinds 4655 relop 4813 dmrnssfld 4926 iss 4989 relcoi1 5198 nfunv 5288 funimass2 5333 fvssunirng 5570 fvmptg 5634 oprabidlem 5950 elovmpo 6119 tfrlem1 6363 oaword1 6526 0domg 6895 diffifi 6952 exmidpw 6966 djulclb 7116 0ct 7168 nlt1pig 7403 dmaddpq 7441 dmmulpq 7442 archnqq 7479 prarloclemarch2 7481 prarloclemlt 7555 cnegex 8199 nnge1 9007 zneo 9421 fsum2d 11581 fsumabs 11611 fsumiun 11623 fprod2d 11769 efne0 11824 nn0o1gt2 12049 ennnfonelemex 12574 qtopbasss 14700 ivthdichlem 14830 dvmptfsum 14904 reeff1o 14949 coseq0negpitopi 15012 cos02pilt1 15027 logltb 15050 gausslemma2dlem0i 15214 2lgs 15261 bdop 15437 bj-nntrans 15513 |
Copyright terms: Public domain | W3C validator |