![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | Unicode version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 |
![]() ![]() |
mpi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 16 syl6mpi 64 mp2ani 432 pm2.24i 624 simplimdc 861 mp3an3 1336 3impexpbicom 1448 mpisyl 1456 equcomi 1714 equsex 1738 equsexd 1739 spimt 1746 spimeh 1749 equvini 1768 equveli 1769 sbcof2 1820 dveeq2 1825 ax11v2 1830 ax16i 1868 pm13.183 2887 euxfr2dc 2934 sbcth 2988 sbcth2 3062 ssun3 3312 ssun4 3313 ralf0 3538 exmidexmid 4208 rext 4227 exss 4239 uniopel 4268 onsucelsucexmid 4541 suc11g 4568 eunex 4572 ordsoexmid 4573 tfisi 4598 finds1 4613 omsinds 4633 relop 4789 dmrnssfld 4902 iss 4965 relcoi1 5172 nfunv 5261 funimass2 5306 fvssunirng 5542 fvmptg 5605 oprabidlem 5919 fovcl 5993 elovmpo 6085 tfrlem1 6322 oaword1 6485 0domg 6850 diffifi 6907 exmidpw 6921 djulclb 7067 0ct 7119 nlt1pig 7353 dmaddpq 7391 dmmulpq 7392 archnqq 7429 prarloclemarch2 7431 prarloclemlt 7505 cnegex 8148 nnge1 8955 zneo 9367 fsum2d 11456 fsumabs 11486 fsumiun 11498 fprod2d 11644 efne0 11699 nn0o1gt2 11923 ennnfonelemex 12428 qtopbasss 14292 reeff1o 14465 coseq0negpitopi 14528 cos02pilt1 14543 logltb 14566 bdop 14898 bj-nntrans 14974 |
Copyright terms: Public domain | W3C validator |