Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spime | GIF version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) |
Ref | Expression |
---|---|
spime.1 | ⊢ Ⅎ𝑥𝜑 |
spime.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spime | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spime.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | spime.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | spimed 1728 | . 2 ⊢ (⊤ → (𝜑 → ∃𝑥𝜓)) |
5 | 4 | mptru 1352 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1344 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 |
This theorem is referenced by: spimev 1849 |
Copyright terms: Public domain | W3C validator |